Proc. NIPR Symp. Polar Meteorol. Glaciol., 8, 198, 1994

BACKGROUND LEVELS OF HCOO⁻, $CH_3SO_3^-$, NO_3^- , SO_4^{2-} AND NH_4^+ IN ICE CORES FROM INLAND GREENLAND (ABSTRACT)

Kazuo Osada¹ and Chester C. Langway, Jr.²

¹Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464–01 ²Ice Core Laboratory, Department of Geology, State University of New York at Buffalo

Concentration levels of the organic acids $HCOO^-$ and $CH_3SO_3^-$, inorganic acids NO_3^- and excess SO_4^{2-} and ammonium were measured in pre-1900 AD ice layers from seven geographically dispersed inland sites in Greenland. Average multiple-year background concentration levels are calculated for each ion at each site from laboratory measurements of continuous core samples representing from 4 to 10 years of snow accumulation (32 to 80 individual measurements) from various time intervals.

The HCOO⁻ concentration level increases from 6 ng/g in the northern most cold site to 36 ng/g in the southern most warm site; $CH_3SO_3^-$ increases from 0.9 ng/g to 2.8 ng/g; NO_3^- decreases from 83 ng/g to 37 ng/g; excess $SO_4^{2^-}$ decreases from 43 ng/g to 19 ng/g, all with variability. The distribution of the NH_4^+ ion shows a nearly constant level at about 6 ng/g for all sites except Dye-2 where it reaches 10 ng/g. The deposition patterns for HCOO⁻ and NH_4^+ on the ice sheet suggest that major contributions arrive from sources originating from the southwest of Greenland.

(Received December 1, 1993)