Proc. NIPR Symp. Polar Meteorol. Glaciol., 7, 100, 1993

THE SOURCE OF ATMOSPHERIC AEROSOLS IN INLAND ANTARCTICA (ABSTRACT)

Satoru Kanamori¹, Nobuko Kanamori¹, Masataka Nishikawa², Okitsugu Watanabe³, Shuhji Aoki³, Yasu-nobu Iwasaka⁴, Fumihiko Nishio⁵ and Kikuo Okada⁶

 ¹Water Research Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-01
²National Institute for Environmental Studies, 16–2, Onogawa, Tsukuba 305
³National Institute of Polar Research, 9–10, Kaga 1-chome, Itabashi-ku, Tokyo 173
⁴Solar-Terrestrial Environment Laboratory, Nagoya University, 3–13, Honohara, Toyokawa 442
⁵Hokkaido University of Education, Kushiro Branch, 15–55, Shiroyama 1-chome, Kushiro 085
⁶Meteorological Research Institute, 1–1, Nagamine, Tsukuba 305

Extensive sampling of drifting snow and pit snow were carried out on Mizuho Plateau by JARE-29 along the route from near the sea shore (point S20) up to about 600 km inland (point A). The typical sea salt components, Na and Cl, in summer drifting snow are high near the coast and decrease exponentially inland. In contrast, n.s.s.SO₄ and NO₃ show abrupt rises at most inland, suggesting that they are supplied from high altitude.

The compositions of atmospheric aerosols and drifting or surface snow show a considerable positive correlation and, therefore, the chemical composition of atmospheric aerosols in the past can be traced back from that in deposited snow with time mark from δ^{18} O distribution.

The atmospheric aerosols at Syowa Station show typical maritime seasonal variation: Na and Cl are high in winter and n.s.s. SO_4 and MSA (methanesulfonic acid) high in summer. Such annual variation can also be found in deposited snow at near shore stations, for example at point S25. However, such regular correspondence between distribution pattern of chemical components and season (as determined from $\delta^{18}O$ distribution) is no longer apparent in inland snow. This also strongly suggests supply of aerosol materials from high altitude, possibly from high troposphere or lower stratosphere.

(Received December 16, 1992)