Proc. NIPR Symp. Polar Meteorol. Glaciol., 7, 98, 1993

GROUND BASED NO_2 AND O_3 MEASUREMENTS BY VISIBLE SPECTROMETER AT SYOWA STATION, ANTARCTICA (ABSTRACT)

Kei NAKAMURA¹, Yutaka Kondo¹, W. Andrew Matthews², Paul V. Johnston², Masahiko Hayashi¹, Makoto Koike¹, Yasu-nobu Iwasaka¹, Akira Shimizu³, Afif Budiyono⁴, Takashi Yamanouchi⁵ and Shuhji Aoki⁵

 ¹Solar-Terrestrial Environment Laboratory, Nagoya University, 3–13, Honohara, Toyokawa 442
²National Institute of Water and Atmospheric Research, Lauder, New Zealand ³National Institute for Environmental Studies, Onogawa, Tsukuba 305
⁴Japan, Jl. Dr. Djundjunan 133, Bandung 40173, Indonesia
⁵National Institute of Polar Research, 9–10, Kaga 1-chome, Itabashi-ku, Tokyo 173

The column amounts of NO₂ and ozone have been measured using visible spectroscopy at Syowa Station (69°S) since March 1990. Ozone was also measured at the same location with a Dobson spectrometer as well as ozonesondes being flown regularly. The characteristic features of the seasonal and diurnal variations of NO₂ are presented. The very low values of NO₂ in mid winter and early spring are consistent with the conditions predicted to be needed for heterogeneous ozone destruction in early spring. In late spring and summer of 1991, NO₂ amounts were considerably smaller than in 1990, presumably due to the effect of the Mt. Pinatubo eruption.

(Received December 4, 1992)