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Abstract: P-wave velocities (Vp) in ultra-high temperature granulites (UHT) were 
measured up to 1.0 GPa from 25°C to 400°C with a piston-cylinder-type high-pressure 
apparatus. Rocks measured are meta-igneous UHT rocks collected from Mount Riiser­
Larsen, Amundsen Bay, Napier Complex. Core rock samples 14 mm in diameter and 
12 mm long were subjected to high-pressure experiments. All rocks show a rapid 
increase of Vp at low pressure up to 0.5 GPa and nearly constant Vp at higher 
pressures. The Vp values measured at 1.0 GPa and 400°C are 7.17 km/s for a meta­
pyroxenite, 6.93 km/s, 6.88 km/s for mafic granulites and 6.17 km/s for an ortho­
pyroxene felsic gneiss. A well-defined correlation exists between Vp and the Si02 

content of the rocks, which is expressed as Vp (km/s)=-0.051Si02+9.85 at 1.0 GPa and 
25°C. The Vp values measured for the Napier mafic granulites are comparable to those 
of the Mizuho lower crustal layer (6.95 km/s of Vp at depth from 33 to 40 km; A. 
Ikami et al., Mem. Natl Inst. Polar Res., Ser. C, 15, 69, 1984). The present results 
suggest that the lower crust in the Mizuho Plateau is probably composed of mafic 
granulites (garnet-free) rather than garnet-bearing rocks. The higher pressure in 
Liltzow-Holm Complex overlie the lower pressure rocks (Napier Complex). The 
double-thickened crustal model in which peak metamorphic pressure increases with 
depth can't explain the inversion of metamorphic pressure across the crust. We suggest 
that the Liltzow-Holm Complex was exhumed tectonically upon the Napier Complex 
after the Pan-African continental collision between the Napier Complex and Dronning 
Maud Land. 

key words: P-wave velocity, granulite, Archean Napier Complex, Mizuho Plateau, 
crustal structures 

1. Introduction 

A linear correlation between P-wave velocity and whole rock composition of rock 

has been demonstrated from P-wave velocity measurements of rocks with various whole 

rock compositions, and lithological crustal models have been proposed by linking a 

velocity model to laboratory data (Christensen and Mooney, 1995; Rudnick and Fountain, 

1995). The P-wave velocity in high-grade metamorphosed mafic rocks strongly depends 

on metamorphic grades and mineral paragenesis as well as whole rock composition. 

Gamet-bearing mafic rocks such as eclogite and garnet-granulite show higher P-wave: 

velocity than amphibolite-facies rocks, although they have similar whole rock 

composition. Therefore, linking laboratory data of various metamorphic rocks to a 
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seismic velocity model of metamorphic belts could be a useful tool to estimate the 
metamorphic grade of the lower parts of crust. 

Seismologists have made great efforts to understand the crustal structure of the 
Liitzow-Holm Bay region in East Antarctica (Ikami et al., 1984; Ito and Ikami, 1984, 
1986; Ito and Kanao, 1995; Kanao, 1997; Kanao et al., 1997). In spite of these efforts, 
little progress has been made in laboratory measurements of elastic velocities of 
metamorphic rocks in East Antarctica. P-wave laboratory data are only available from 
metamorphic rocks of Ongul Island measured at pressures up to 440 MPa (Yukutake and 
Ito, 1984). Here we report Vp values of ultra-high temperature granulite-facies rocks from 
Mount Riiser-Larsen, Amundsen Bay, Archean Napier Complex. 

The Napier Complex is characterized by ultra-high temperature granulite-facies 
metamorphism where metamorphic temperature reaches over 1000°C (Harley and 
Hensen, 1990). The Napier metamorphic rocks are also characterized by extremely "dry" 
nature, and it has been proposed that H20 is released by dehydration of precursors or 
partial melting prior to UHT metamorphism. To the east of the Napier Complex, the 
Liitzow-Holm and Rayner Complexes are widely distributed (Fig. 1), they are 
characterized by relatively higher abundances of hydrous minerals. Tectonic relationships 
among these three metamorphic complexes are not well understood. The Rayner 
Complex to the east of the Liitzow-Holm Complex has been recognized as a -1000 Ma 
high-grade metamorphic terrane overprinted by -500 Ma lower grade metamorphism 
(Black et al., 1987). However, Shiraishi et al. (1997) suggests that the eastern margin of 
the Rayner Complex is underwent high-grade metamorphism during the Cambrian and it 
is an eastward continuation of the -500 Ma Liitzow-Holm Complex. We consider a 
hypothesis that the Liitzow-Holm and Rayner Complexes were exhumed tectonically 
upon the Napier Complex during and/or after the amalgamation of Gondwana continent. 
Combining the seismic structure presented by earlier studies (Ikami et al., 1984; Ito and 
Ikami, 1984, 1986; Ito and Kanao, 1995; Kanao, 1997; Kanao et al., 1997), we use the 
present Vp data to estimate the crustal structure of the Liitzow-Holm Complex. 

2. Samples 

Rock samples used in this study were collected from Mount Riiser-Larsen, 
Amundsen Bay, in the Napier Complex (Ishizuka et al., 1998; Ishikawa et al., 2000). The 
sample locations are shown on the geological map (Fig. 1). Four samples with 
homogenous texture were used to measure Vp. They are pyroxenite (MI97012402), mafic 
granulites (MI970127IO, MI96122602) and orthopyroxene felsic gneiss (MI97012401). 
The whole rock chemistry was analyzed by the X-ray fluorescence method (XRF) at the 
National. Institute of Polar Research (NIPR). The chemical composition of rocks 
measured ranges from 44 to 66 wt% Si02 (Table 1). The modal compositions (vol%) are 
also given in Table 1. 

2.1. Pyroxenite (M/97012402) 
Pyroxenite (MI97012402) is a homogenous rock with granoblastic texture. It 

contains orthopyroxene (51.3 vol%) and clinopyroxene (31.3 vol%) with small amounts 
of plagioclase (4.0 vol%) and biotite (2.6 vol%). The rock is classified as websterite. The 
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- ultramafic rocks ( ® : peridotites, pyroxenites and serpentinites, occurring as blocks, pods and layers) 

Fig. 1. Geological map of Mount Riiser-Larsen, Amundsen Bay, Enderby Land, East 

Antarctica ( after lshizuka et al., 1998 ), showing sample localities of four rocks used in 
this study. 

bulk chemistry of pyroxenite shows basic composition with Si02 content of 44.18 wt%. 
Grain sizes of mineral constituents range from 0.8 to 1.0 mm. 

2.2. Orthopyroxene felsic gneiss (M/97012401) 
Orthopyroxene felsic gneiss is a homogeneous rock with medium grain size (1.0 

mm). No foliation or lineation is noted. Pyroxenes and plagioclase are the predominant 
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Table 1. Chemical and physical properties of the rock samples. 

Sample No. M97012710 MI97012401 MI96122602 MI97012402 
Run No. SH-01 SH-02 SH-03 SH-04 

Rock type mafic granulite Opx felsic gneiss mafic granulite pyroxenite 

Bulk chemistry (wt%) 
Si02 52.23 65.42 49.50 44.18 
Ti02 1.17 0.44 0.72 1.69 
Alz03 13.52 15.96 14.20 5.25 
Fe203 14.17 3.87 14.00 20.77 
MnO 0.15 0.06 0.18 0.22 
MgO 6.28 1.53 8.45 15.37 
CaO 9.22 4.05 9.14 9.99 
Na20 1.52 4.13 2.16 0.00 
KzO 0.34 1.90 0.33 1.03 
P20s 0.06 0.09 0.05 0.06 

Total 98.67 97.46 98.74 98.48 

Mode (vol%) 
Opx 24.6 6.5 17.0 51.3 
Cpx 19.5 8.0 14.0 31.3 
Pl 52.8 81.5 61.5 4.0 
Qtz 2.5 
Bt 0.4 1.0 2.6 
Opq 2.7 1.5 6.5 5.8 

Grain size (mm) 
Opx, Cpx 1.5 1.0 3.0 0.8-1.0 
Pl 1.5 2.0 2.0 

Sample length (mm) 12.22 12.05 11.38 11.93 

Density (g/cm3) 3.024 2.681 2.881 3.405 

mineral constituents. This rock exhibits granoblastic polygonal texture. Bulk rock 
analysis of the gneiss shows Si02 content of 65.42 wt%. 

2.3. Ma.fie granulite M/97012710 and M/96122602 
The main mineral constituents are plagioclase (52.8 and 61.5 vol%), orthopyroxene 

(24.6 and 17.0 vol%) and clinopyroxene (19.5 and 14.0 vol%). They are homogeneous 
medium-to-coarse grained rocks (1.5-2.5 mm) with granoblastic texture. 

3. Method 

Measurements of P-wave velocity in four rocks were carried out up to 1.0 GPa and 
400°C with a piston-cylinder-type apparatus. Rock samples were cut to form a 14 mm 
diameter core which was doubly polished to a length of 12 mm. The length was 
measured with a micrometer and the uncertainly is estimated to be about ±0.05 mm. The 
core samples were then oven-dried for 24-hours. 

Figure 2 shows the high-pressure cell assembly and the ultrasonic attachment. The 
rock sample was loaded into a talc-pyrophyllite high-pressure cell. We used a cylinder 
with 34-mm borehole 80 mm in thickness. Piezoelectric LiNb03 transducers were located 
on both ends of the core sample. A graphite heater was used. The temperature was 
monitored by a Pt-Rh13 thermocouple on the top end of the core sample. 

Vp was measured using the pulse transmission technique. We measured the travel 
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Fig. 3. Determination of travel times. The travel time ts was determined by LSAR model. The 
ts-to value is true travel time; t0 is the travel time when there is no sample. 

time of an ultrasonic wave through a core sample of known length. The system setup is 
shown in Fig. 2. It consists of a· high-voltage (235V) pulse generator and a 500 MHz 
sampling digital oscilloscope with sampling rate of 1.0-2.0X 1010 samples/s. The high 
voltage pulse was separated into two lines. One thousand reduced pulses were recorded. 
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Pulses were input to the LiNb03 transducers to produce compressional waves. Another 
transducer then received the compressional waves and the pulses were converted into 
electrical pulses. The raw data consisting of waveforms are stored on a hard disk of the 
digital oscilloscope for determination of travel times using the LSAR model (Kitagawa 
and Takanami, 1991). Because the travel time ts monitored includes the time of 
transmission in lead lines and time to convert electric-mechanical signals, we measured 
travel time t0 without the core rock sample, which has been subtracted from the ts value 
(Fig. 3). The ts-to value is considered to be the true travel time throughout the rock 
sample. Electrical waveforms were measured 4096 times for each pressure-temperature 
condition, and Vp values reported in this study represent the average values. Errors of the 
present ultrasonic velocity measurements are estimated to be less than 0.1 km/s. 

4. Results 

Figure 4 shows a pressure-temperature path during one experimental run. We first 
measured P-wave velocity at room temperature under various pressures at 0.1 GPa 
intervals during pressurization from 0.1 GPa to 1.0 GPa. During decompression from 1.0 
GPa to 0.1 GPa, we measured P-wave velocity under various temperatures (from room 
temperature to higher temperatures up to 400°C) at a constant pressure at 0.1 GPa 
intervals. 

Figure 5 shows P wave velocity versus pressure relations for all runs at 25°C. The 
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Fig. 4. Pressure-temperature path for a typical run. Vp was measured during pressurization 

from 0.1 GPa to 1.0 GPa at 0.1 GPa intervals, and subsequently was measured during 

decompression from 1.0 GPa to 0.1 GPa at 0.1 GPa interval and temperature from 

25°C to 400°C. 
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P-wave velocities measured during pressurization are shown in this figure together with 
the velocities measured during decompression. The pressure dependence of velocity data 
(dVp/dP) is much lower above 0.6 GPa than below 0.6 GPa. Strong pressure-dependence 
of velocity at relatively lower pressure conditions has been attributed to closure of micro­
cracks and decreasing rock porosity (e.g. Nieslar and Jackson, 1989). The present data 
indicate that rock porosity is squeezed out continuously up to 0.6 GPa. The d Vp/dP 
values obtained below 0.6 GPa during decompression are much lower than those 
observed during pressurization, probably due to unopened micro-cracks which were once 
closed at higher pressures. At pressures from 0.6 to 1.0 GPa, Vp slightly increases or 
remains nearly constant. dVpldP ranges from 8.81Xl0-4 to 1.46XI0- 2 km/s GPa. P wave 
velocity at 1.0 GPa and 400°C is 7. 17 km/s for pyroxenite, 6.93 km/s-6.88 km/s for 
mafic granulites and 6. 17 km/s for orthopyroxene fels�c gneiss, respectively. 

The measured P-wave velocity decreases with increasing run-temperature in all rock 
samples (Fig. 6). The results show a well-defined linear positive correlation between Vp 
and rock density (cf Birch, 1961). The calculated acoustic impedance (Xl06 kg/m- 2s-1) of 
the pyroxenite, mafic granulites, and felsic gneiss are 26.0, 21.8, 20.8, 17.5, respectively 
(Fig. 7). The reflection coefficient between the mafic granulites and the felsic gneiss 
ranges from 0.011 to 0.086 at 1.0 GPa and 25°C. 

Figure 8 shows the measured Vp values at 0.6 GPa and 25°C. The solid line is 
obtained by fitting the Vp value as a function of the Si02 composition· of rocks using the 
least squares fitting method. We obtained a linear correlation expressed by Vp (km/s) = 
-0.051Si02+9.85. The regression line (dashed line) obtained from laboratory measure-
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ments of granulite-facies rocks (Rudnick and Fountain, 1995) is also shown in this figure. 
The present Vp values are significantly higher than the regression line given by Rudnick 
and Fountain (1995). This difference could be attributed to the extremely "dry" nature of 
our samples. The samples measured in this study exhibit an extremely low abundance of 
hydrous minerals (less than 2.5 vol% biotite, no amphibole). 

The present data indicate that Vp in the hornblende-free basic granulites is 
considerably higher than the mean Vp value (7 .1 km/s) of the lower crust in the 
Archean/Proterozoic continental crust model (Rudnick and Fountain, 1995). The present 
results suggest that the lower crust of Archean/Proterozoic continental crust cratons is 
composed of anhydrous (dry) granulite with andesitic composition or alternatively it 
consists of hydrous rock (hornblende-bearing) with basaltic composition. 

5. Tectonic implications 

The Napier Complex is exposed in Enderby Land, East Antarctica, and regarded as 
a fragment of the Archean continent (Sheraton et al., 1987). Zircon U-Pb dating of the 
felsic gneisses show a wide range of age data ranging from 3900 Ma to 2400 Ma, 
reflecting multiple growth history (Black et al., 1986; Harley and Black, 1997). The 
Napier Complex is composed of metamorphosed igneous and sedimentary rocks; its main 
rock constituent is orthopyroxene felsic gneiss with chemical characteristics of the 
Archean TTG (Suzuki, 2000). Protholiths of meta-sedimentary rocks including magnetite-



10 

j '-' 
,s 
t

20 

30 

Temperature (
°

C) 

100 200 300 400 
-, 

Fig. 9. Comparison of present data with the seismic velocity 
structure in Mizuho Plateau (right) (lkami et al., 
1984 ). The Vp are adjusted to values by assuming a 
typical continental geotherm, after Turcotte and 
Schubert ( 1982) (left). 

0 ---------------------

10 

: �  • >c 

: i!! 
20 •. . . . . . . . . . .  ;. ¥;-. . ... . . 

: OQ 
• ::II • S!. 

- : gi 
a : en 
B : §  ,fl : g. c:i., ' UI 

� 
. .  · �  ' N  
: cfl 

30 . . . . . . . . . . . ... }oo' • • • • • •  

a a -o .  � � � :  
n n d ,  

!!9. ' !!9 
>c • · · · · · · · · ·or · � " . . . .  · ·t : · · · · · · · · · · - � · - · · · · · · · · · ·  

::, . ::, -·· 
C • C f; ,  

i : i i: ..-.. . ..-.. . .  
.J:ii,. • UI .- .  
\0 • N 00, 

i:S : � �: cfl • � ' 
.._., : ....... 

40 ... . . . . . . . . . . ... . . . . . . . . .  . 7 

: Moho . � . . . . . . . . . .  . .  

50 ..................................................................................................... .... 

5j 6.0 6.5 7.0 7.5 

Vp (km/s) 
8.0 8.5 

"'t:, 

� � < � 
< � 
0 �­
� 
s· 
C: 
::i::: ..., 

OCI 
.; 

§ 

� � 
Y' 
z 
.§ 
c'D" .; 
n 
0 

a 
"O 
n 
;,< 

-
-.J 
Vl 



176 E. Shingai, M. Ishikawa and M. Arima 

quartz rock (banded iron formation), quartzite, garnet-quartz and garnet-sillimanite 
gneisses (psamitic-to-pelitic rocks) were probably formed by arc-amalgamation processes 
in the convergent tectonic environment. Thick mafic sills intruded into the orthopyroxene 
felsic gneisses and meta-sedimentary rocks_ (Ishikawa et al., 2000), indicating extensive 
magmatic activities after the arc-amalgamation. 

In contrast to the Napier Complex, the neighboring late Proterozoic Rayner Complex 
(Sheraton et al., 1987) and early Paleozoic (550-530 Ma) Ltitzow-Holm Complex (Hiroi et 
al., 1991; Shiraishi et al., 1989a, b) are composed predominantly of amphibolite to 
granulite-facies rocks characterized by large amounts of hydrous minerals. The Ltitzow­
Holm Complex is regarded as a Pan-African orogenic belt, representing one of the collision 

(a) 

(c) Liltzow-Holm Complex 
(Pan-African orogenic belt) 

Fig. 10. Tectonic evolution model for Liitzaw-Holm Complex. (a) Continental collision stage. (b) 
Exhumation of Liitzaw-Holm Complex due to slab break-off (c) Post collision stage. 
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zones during Gondwana amalgamation (Shiraishi et al. , 1994). Seismic experiments were 
carried out on the Mizuho Plateau, Liitzow-Holm Complex in 1979-1981 (Ikami et al., 
1984). The P-wave arrival time data show the Moho discontinuity at 40 km depth, Vp of 
6.95 km/s in the lower crust lies at depths from 33 to 40 km (Fig. 9). The measured Vp 
values for the Napier mafic orthopyroxene-clinopyroxene-plagioclase granulite samples are 
similar to the P-wave velocity reported for the lower crust. 

Granulite-facies rocks with clockwise P-T path are widely exposed in orogenic belts 
formed during supercontinent amalgamation (e. g. Pan-African orogenic belt). A 
clockwise P-T path has been proposed for the Liitzow-Holm Complex (e.g. Motoyoshi et 
al. , 1989; Motoyoshi and Ishikawa, 1997). England and Thompson (1984) attributed 
exhumation of granulite-facies rocks with clockwise P-T paths· to extensive surface 
erosion of double-thickened crust in continental collision zones. The double-thickened 
crust model requires development of garnet-bearing high pressure rocks at a deeper level 
of the crust. It may be concluded that the Liitzow-Holm Complex is an exposed deep 
level of a double-thickened crust which was exhumed statically, probably due to surface 
erosion. 

Combining the present experimental results, however, our interpretation of the P­
wave velocity structure of the Mizuho Plateau, Liitzow-Holm Complex led to the 
suggestion that the lower crust is composed of mafic orthopyroxene-clinopyroxene­
plagioclase granulites (garnet-free) rather than garnet-bearing rock. This means that the 
higher-pressure granulite-facies rocks (Liitzow-Holm Complex) overlie lower pressure 
granulite-facies rocks (probably Napier Complex) (Fig. 10). The double-thickened crust 
model can't explain inversion of metamorphic pressure across the crust because peak 
metamorphic pressure increases with depth in the model. We suggest that the Liitzow­
Holm Complex was metamorphosed during the Pan-African continental collision between 
the Napier Complex and Dronning Maud Land and exhumed tectonically upon the Napier 
Complex after the collision. The exhumed tectonic slice, once metamorphosed at a deeper 
crustal level, overlies the Napier Complex, which now consists of the lowermost crustal 
layer of the Liitzow-Holm Bay region. 

6. Summary 

We measured P-wave velocities in ultra-high temperature granulites collected from 
Mount Riiser-Larsen, Amundsen Bay, Napier Complex. The measurements were done 
with a piston-cylinder-type high-pressure apparatus up to 1.0 GPa from 25°C to 400°C. 
The Vp values measured at 1.0 GPa and 400°C are 7 . 17 km/s for a meta-pyroxenite, 6.93 
km/s, 6.88 km/s for mafic granulites and 6. 17 km/s for an orthopyroxene felsic gneiss. Vp 
and Si02 contents of the rocks exhibit well-defined linear correlation at 1.0 GPa and 
25°C, which is formulated as Vp =-0.051Si02+9.85. The Vp values measured for the 
Napier mafic granulites are comparable to those of the Mizuho lower crust suggested by 
Ikami et al. (1984). The present results suggest that the lower crust in the Mizuho Plateau 
in probably composed of mafic granulites (garnet-free) rather than garnet-bearing rocks. 
We suggest that the Liitzow-Holm Complex was exhumed tectonically upon the Napier 
Complex after the Pan-African continental collision between the Napier Complex and 
Dronning Maud Land. 
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