# AFTERSHOCK ACTIVITY OF THE GREAT 1998 EARTHQUAKE IN THE ANTARCTIC PLATE

# Katsutada KAMINUMA, Reiji KOBAYASHI, Yoshifumi NOGI and Masaki KANAO

National Institute of Polar Research, Kaga 1-chome, Itabashi-ku, Tokyo 173-8515

**Abstract:** On March 25, 1998, a great earthquake ( $M_s$  8.0) struck the Balleny Islands region. This intraplate earthquake is the largest ever recorded in the Antarctic plate where the seismicity is very low. The aftershock activity of the Antarctic earthquake is investigated using the Weekly PDE (Preliminary Determination of Epicenters) seismicity catalog. Sixty seven aftershocks have been located during a period of 273 days. The distribution of the aftershocks may suggest that the fault plane trends E-W. The statistical parameters of the aftershock activity are determined. The *b*-value of the Gutenberg-Richter magnitude-frequency relation is 1.05. The large *b*-value indicates that many small aftershocks have occurred. The *p*-value of the modified Omori formula for aftershock activity is also determined as 1.14. In comparison with other great earthquakes, the *p*-value is relatively small, which may indicate that the aftershock activity continued for a long time.

key words: Antarctic earthquake, aftershock, b-value, p-value, intraplate earthquake

# 1. Introduction

Seismicity in the Antarctic plate is very low, except the high seismicity along the plate boundaries. The seismicity can be divided into the following five regions; 1) intraplate low seismic region, 2) high seismic region around the tip of the Antarctic Peninsula, 3) aseismic region of the Antarctic continent, 4) low seismic region of the coastal area at the continental edge, and 5) volcanic regions (KAMINUMA, 1994).

At least three previous felt shocks have been recorded since the International Geophysical Year (IGY) of 1957. The first one was the M4.7 earthquake accompanied by the volcanic eruptions of Deception Island ( $62^{\circ}57'S$ ,  $60^{\circ}38'W$ ) on December 7, 1967. The huts of the stations on Deception Island were destroyed by the eruptions. All members in the stations evacuated safely after the eruptions.

The largest earthquake ever recorded in the Antarctic plate occurred in the South Shetland Islands on February 8, 1971. Its body-wave magnitude and surface-wave magnitude were determined by the US Geological Survey (USGS) National Earthquake Information Center (NEIC) to be 6.3 and 7.0, respectively. This is the only recorded earthquake of magnitude larger than 7.0 in the Antarctic. This earthquake was also felt at Faraday Station (65°14.8'S, 64°15.5'W) of the UK.

An eruption of Mount Erebus occurred on October 13, 1984; it was felt at McMurdo

Station (77°51'S, 166°40'E) of the US. All of these events were volcanic ones (KAMINUMA, 1994).

The seismic activity at the tip of the Antarctic Peninsula is the highest in the Antarctic. On the other hand, very few intraplate earthquakes have been located in the Southern Ocean, and the magnitudes are less than 6.

# 2. A Great Earthquake on March 25, 1998

A great earthquake with surface-wave magnitude 8.0 took place in the Balleny Islands region on March 25, 1998. Table 1 lists the source parameters determined by NEIC, except the best double-couple mechanism and moment magnitude  $(M_w)$  of the largest aftershock determined by the Harvard group. The earthquake was located about 500 km offshore from the Antarctic coast in the Antarctic plate. There have been other earthquakes with a magnutude larger than 5.5, but this earthquake is the largest oceanic intraplate earthquake ever recorded in the Antarctic plate (WIENS *et al.*, 1998).

The leader of Dumont d'Urville Station ( $66^{\circ}40'S$ ,  $140^{\circ}01'E$ ) of France informed the leader of Syowa Station ( $69^{\circ}00'S$ ,  $39^{\circ}35'E$ ) of Japan that all wintering members in the station felt a quake, and something on the shelf in the building fell down. The March 25, 1998, earthquake is the first event that has been felt on the Antarctic continent except volcanic earthquakes. The intensity at the station is estimated to be III (8.0-2.5 Gal) on the intensity scale of the Japan Meteorological Agency and V on the Medvedev-Sponheur-Karnik (MSK) intensity scale. Figure 1 shows the locations of the epicenter with the focal mechanism and of the two stations, and fracture zones.

The focal mechanism indicates the strike slip fault trending N-S or E-W. Some fracture zones are located near the epicentral region. It is clear in Fig. 1 that the fracture zones are perpendicular to the plate boundary between the Antarctic plate and the Australian plate, and trend NNW-SSE. However, the epicenter itself is not located on the fracture zone, and the strikes of the fracture zones differ from those of the nodal planes of the focal mechanism. The fault plane cannot be inferred from the tectonic background.

Aftershocks are important data in order to determine the fault plane. Thus the aftershock activity of the March 25, 1998, Antarctic earthquake is investigated, and the fault plane is determined by the aftershock distributions. The *b*-value and *p*-value are also determined. These values are statistical parameters of aftershock activity. The relation between the aftershock activity and the source process is also discussed.

|                     | Main shock                      | Largest aftershock              |
|---------------------|---------------------------------|---------------------------------|
| Origin time (UTC)   | 1998/03/25 03:12:24.7           | 1998/03/25 12:17:22.7           |
| Location            | 62.876°S, 149.712°E             | 63.578°S, 147.876°E             |
| Depth               | 10 km                           | 10 km                           |
| Magnitude           | $m_b$ 6.6, $M_s$ 8.0, $M_W$ 7.7 | $m_b$ 5.8, $M_s$ 6.1, $M_W$ 6.5 |
| Best double-couple  | (94°, 76°, –9°),                | (277°, 67°, 21°),               |
| (strike, dip, slip) | (187°, 81°, -165°)              | (179°, 71°, 156°)               |

Table 1. Source parameters of the main shock and largest aftershock.



Fig. 1. Stereo projection showing the epicenter of the March 25, 1998, earthquake (star), and Syowa (SYO) and Dumont d'Urville (DRV) stations (triangles). Thin and dashed lines represent tectonic boundaries and fracture zones, respectively.

### 3. Aftershocks

According to the Weekly Preliminary Determination of Epicenters (PDE) of NEIC, 67 aftershocks occurred during 273 days from March 25 to December 23, 1998, as listed in Table 2. The epicenter distribution of the main shock and aftershocks are shown in Fig. 2, and the temporal distribution of the aftershocks with magnitude is shown in Fig. 3a. The fault plane of the main shock was taken as the E-W direction estimated from the aftershock distribution in Fig. 2. The epicenter of the main shock was located in the eastern part of the aftershock distribution, and indicates unilateral faulting.

The rupture length of the fault plane reached at least 300 km. However, the hypocenters of the aftershocks were located at 10 km depth except for two aftershocks located at 33 km depth. Since the focal region is near the Australian-Antarctic ridge, the shallow fault plane may be due to the young thin lithosphere.

Nine hours after the main shock, the largest aftershock with an  $M_s$  of 6.1 occurred. This event is located south of the fault plane with some concentration of aftershocks as shown in Fig. 2. The temporal variation of the concentrated aftershocks in the south is shown in Fig. 3b. The largest aftershock with one foreshock ( $m_b$  4.5) and some aftershocks seem to be induced shocks by the main shock because the epicenters are distributed about 60–70 km south of the fault plane of the main shock. The best double-couple mechanism of the largest aftershock is very similar to that of the main shock. However, we cannot determine whether the N-S or E-W nodal plane is the fault plane, because the aftershocks concentrated near the largest aftershock do not lie on a line.

.

| Date<br>(YYYY/MM/DD) | Time<br>(HH/MM/SS.S) | Lat.<br>(°S)     | Lon.<br>(°E) | Depth<br>(km) | М              |
|----------------------|----------------------|------------------|--------------|---------------|----------------|
| 1998/03/25           | 03:12:25.0           | 62.877           | 149.527      | 10.0          | 8.0Ms          |
| 1998/03/25           | 03:19:05.1           | 61.301           | 143.342      | 10.0          | 5 Jh           |
| 1998/03/25           | 03.34.08.4           | 62 306           | 131.043      | 33.0          | 3.2mb          |
| 1998/03/25           | 03:38:56.0           | 62.708           | 144.832      | 10.0          | 4.6mb          |
| 1998/03/25           | 04:01:32.5           | 62.659           | 147.684      | 10.0          | 4.1mb          |
| 1998/03/25           | 04:10:19.9           | 63.176           | 146.838      | 10.0          | 3.9mb          |
| 1998/03/25           | 04:14:25.8           | 63.718           | 148.129      | 10.0          | 4.5mb          |
| 1998/03/25           | 06:00:27.8           | 62.625           | 149.345      | 10.0          | 4.7mb          |
| 1998/03/25           | 06:06:14.6           | 63.046           | 147.695      | 10.0          | 4.3mb          |
| 1998/03/25           | 07:12:17.3           | 62.869           | 145.389      | 10.0          | 4.3mb          |
| 1998/03/25           | 07:19:17.8           | 62.970<br>62.802 | 144.337      | 10.0          | 4.6mb          |
| 1998/03/25           | 08:21:55.9           | 62.892           | 144.413      | 10.0          | 4.8mb          |
| 1998/03/25           | 08:28:12.1           | 61.857           | 142.432      | 10.0          | 4.0mb          |
| 1998/03/25           | 09:04:24.6           | 62.304           | 145.189      | 10.0          | 4.3mb          |
| 1998/03/25           | 11:45:12.7           | 62.848           | 150.178      | 10.0          | 4.9mb          |
| 1998/03/25           | 13.14.59.0           | 63.612<br>63.561 | 147.957      | 10.0          | 0.1MS<br>5.8Ms |
| 1998/03/25           | 13:19:58.0           | 62.760           | 149.146      | 10.0          | 4.4mb          |
| 1998/03/25           | 14:21:08.4           | 63.613           | 147.956      | 10.0          | 4.7mb          |
| 1998/03/25           | 17:15:57.0           | 62.977           | 146.037      | 10.0          | 3.9mb          |
| 1998/03/25           | 18:06:54.8           | 63.137           | 151.490      | 10.0          | 3.7mb          |
| 1998/03/25           | 00:59:18.6           | 62.866           | 148.570      | 10.0          | 4.7mb          |
| 1998/03/26           | 06:05:28.6           | 62.692           | 147.604      | 10.0          | 4.2mb          |
| 1998/03/26           | 08:53:53.4           | 63.189           | 150.386      | 10.0          | 4.5mb          |
| 1998/03/26           | 12:25:12.5           | 62.817           | 145.776      | 10.0          | 5.4mb          |
| 1998/03/20           | 00.36.14.0           | 63 035           | 146.032      | 10.0          | 4.5mb<br>4 4mb |
| 1998/03/27           | 01:19:55.8           | 62.616           | 145.989      | 10.0          | 4.6mb          |
| 1998/03/27           | 01:42:07.9           | 63.243           | 144.610      | 10.0          | 4.3mb          |
| 1998/03/27           | 08:57:01.3           | 62.890           | 148.467      | 10.0          | 3.7mb          |
| 1998/03/27           | 10:47:15.9           | 61 275           | 148.338      | 10.0          | 4.5mb<br>3.9mb |
| 1998/03/27           | 15:56:56.7           | 61.192           | 153.249      | 10.0          | 4.1mb          |
| 1998/03/28           | 06:34:50.2           | 63.528           | 148.212      | 10.0          | 4.8Ms          |
| 1998/03/28           | 13:22:31.2           | 62.996           | 147.289      | 10.0          | 4.4mb          |
| 1998/03/29           | 10:06:38.4           | 62 000           | 150.318      | 10.0          | 4.0mb          |
| 1998/03/30           | 17:19:59.7           | 62.545           | 149.586      | 10.0          | 4.0mb          |
| 1998/03/31           | 01:24:07.8           | 62.631           | 147.086      | 10.0          | 5.2mb          |
| 1998/03/31           | 01:43:53.1           | 62.658           | 147.395      | 10.0          | 4.5mb          |
| 1998/03/31           | 22:15:08.5           | 62.708           | 148.947      | 10.0          | 4.0mb          |
| 1998/04/04           | 07:11:40.8           | 62.980           | 147.728      | 10.0          | 4.3mb          |
| 1998/04/04           | 22:10:38.3           | 63.023           | 148.236      | 10.0          | 4.2mb          |
| 1998/04/05           | 15:12:34.3           | 63.026           | 144.553      | 10.0          | 4.4mb          |
| 1998/04/06           | 03:53:21.6           | 62.885           | 150.442      | 10.0          | 3.9mb          |
| 1998/04/10           | 10:10:41.9           | 62.885           | 149.450      | 10.0          | 4.1mb          |
| 1998/04/16           | 11:15:41.8           | 62.832           | 145.041      | 10.0          | 4.4mb          |
| 1998/04/18           | 10:04:21.7           | 63.470           | 147.673      | 10.0          | 5.3Ms          |
| 1998/04/19           | 02:31:15.6           | 62.935           | 147.749      | 10.0          | 4.4mb          |
| 1998/04/19           | 03:40:48.6           | 63 186           | 149.691      | 10.0          | 4.5mb          |
| 1998/05/16           | 18:30:17.8           | 62.814           | 149.510      | 10.0          | 4.4mb          |
| 1998/05/17           | 03:52:18.2           | 63.027           | 151.847      | 10.0          | 4.4mb          |
| 1998/05/26           | 19:51:50.0           | 62.927           | 144.503      | 10.0          | 4.8mb          |
| 1998/06/17           | 13:20:45.0           | 62.847           | 152.133      | 10.0          | 3.8mb          |
| 1998/06/17           | 13:30:57.4           | 62.958           | 148.670      | 10.0          | 4.0mb          |
| 1998/06/20           | 11:49:33.3           | 63.163           | 144.846      | 10.0          | 4.3mb          |
| 1998/08/10           | 21.00.34 3           | 02.838<br>62.603 | 130.964      | 33.U<br>10.0  | 3.8mD<br>4.7mb |
| 1998/08/14           | 13:21:24.7           | 63.607           | 147.488      | 10.0          | 5.3mb          |
| 1998/09/08           | 14:09:32.7           | 62.714           | 145.306      | 10.0          | 4.0mb          |

 Table 2.
 Main shock and aftershocks from the Weekly PDE.



Fig. 2. Distribution of the main shock (star) and the aftershocks (circles). HRV-MAIN, USGS-MAIN, and HRV-AFTER denote the best double-couple of the main shock determined by USGS and the Harvard group, and of the largest aftershock by the Harvard group, respectively.

UTSU (1965) applied the maximum likelihood procedure to obtain the b-value of the Gutenberg-Richter magnitude-frequency relation for earthquakes (GUTENBERG and RICHTER, 1944), which is one of the important statistical laws in seismology. The relation is as follows.

$$\log n(M) = a - bM, \tag{1}$$

where n denotes the number of earthquakes as a function of magnitude M, and a and b are constants depending on the group of earthquakes considered. The *b*-value for M4.3-6.1 aftershocks determined using Utsu's method is 1.05 as shown in Fig. 4. The Gutenberg-Richter relation does not fit the aftershocks with a magnitude less than 4.3. This may suggest that the world wide seismological network used by USGS cannot detect earthquakes with magnitude less than 4.3 in this region.

The frequency of aftershocks with magnitude more than a given value decreases with increasing time as given by the following equation.

$$n(t) = \frac{K}{(t+c)^p} + B,$$
(2)

where n(t) denotes the frequency of aftershocks occurring between time t and  $t+\Delta t$ , B denotes background seismicity, and, K, c, and p are positive constants. In this study, B



Fig. 3. M-T diagrams (a) for the main shock and all aftershocks and (b) for the aftershocks concentrated near the largest aftershock.

can be ignored because there was no seismicity in the focal region before the main shock occurred. When t is the number of days, the parameters were determined by using Ogata's method (OGATA, 1983) as follows. K=6.76, c=0.1, and p=1.14 (Fig. 5).

Table 3 lists the b- and p-values of aftershocks of six shallow great earthquakes in Japan obtained by UTSU (1961, 1969) to compare with those of the 1998 Antarctic earth-

Aftershock Activity of the 1998 Antarctic Earthquake



Fig. 4. Number of aftershocks as a function of magnitude. Open circles represent the number of aftershocks with magnitude M. Filled circles represent the total number of aftershocks with magnitude more than M. The regression line is represented by  $\log n(M)=6.259-1.05M$ .



Fig. 5. Frequency of aftershocks with magnitude more than 4.3. Open circles represent the numbers for each time interval of  $(10^{i+j/3}, 10^{i+(j+1)/3})$  days with i=-3, -2, -1, 0, 1, 2, and j=0, 1, 2 divided by the time interval. The dashed line is represented by  $n(t)=6.76/((t+0.1)^{1.14})$ .

| Location    | Year | М   | b    | р    | Remarks |
|-------------|------|-----|------|------|---------|
| Kanto       | 1923 | 7.9 |      | 1.3  |         |
| Sanriku     | 1933 | 8.1 | 1.1  | 1.5  | U1      |
| To-nankai   | 1944 | 7.9 | 0.7  | 1.1  | U2      |
| Nankai      | 1946 | 8.0 | 0.7  | 1.0  | U2      |
| Tokachi-oki | 1952 | 8.2 | 0.8  | 1.1  | U1      |
| Tokachi-oki | 1968 | 7.9 | 0.9  | 1.0  | U2      |
| Antarctica  | 1998 | 8.0 | 1.05 | 1.14 |         |

Table 3. b- and p-values of aftershocks of great earthquakes in Japan.

quake. U1 and U2 in "Remarks" denote UTSU (1961) and UTSU (1969), respectively.

The *b*-value is considered to be related to some tectonic condition or physical properties of crustal rock in the focal region. The *b*-values listed in the table range between 0.7 and 1.1. Therefore, the large *b*-value of 1.05 means that small earthquakes occurred frequently, and that the structure of the focal region may be inhomogeneous.

The *p*-values in the table range between 1.0 and 1.5. The *p*-value of 1.14 of the Antarctic earthquake is relatively small, compared with the listed great earthquakes. This means that the aftershocks continued for a long time, as the *p*-value is considered to represent the speed of decay of aftershock activity.

# 4. Discussion

The fault plane of the main shock determined from the aftershock distribution trends E-W. However, no tectonic lineation trending E-W in the focal region has been detected by using maps of bathymetry and gravity anomaly. Furthermore, the stress field inferred from the fracture zones trending NNW-SSE cannot explain the mechanism of the main shock indicating NW-SE compression.

The statistical parameters b and p of the aftershock activity indicate that many small aftershocks occurred, and that aftershocks continued for a long time. It is inferred that the parameters probably reflect the strong heterogeneity of the asperity or the fault plane divided into segments whose strikes trend in slightly different directions. The source process analysis using the teleseismic body waves shows that the focal mechanisms of the subevents of the main shock almost trend in the same directions (KIKUCHI and YAMANAKA, 1998). On the other hand, the large non-double-couple component ( $\varepsilon$ =-0.41, NETTLES *et al.*, 1998) cannot be explained by the source process determined from teleseismic body wave analysis. The large non-double-couple component could be caused by strong lateral heterogeneity in the seismic velocity structure, or by the complex source process related to the subevents, which have fault planes trending in different directions. A more detailed analysis is required to determine the cause of the large non-double-couple component.

# 5. Conclusion

Aftershock activity of the March 25, 1998, Antarctic earthquake is reported. The distribution of the aftershocks shows that the fault plane of the main shock trends E-W. However, no tectonic lineation trending E-W has been found in the maps of bathymetry and gravity anomaly, and the source mechanism cannot be interpreted by the tectonic condition in and around the focal region. The large *b*-value of 1.05 indicates that many small earthquakes occurred, and the small *p*-value of 1.14 indicates that the aftershock activity decayed slowly.

### Acknowledgments

The aftershock data are taken from the IRIS Data Management Center. The authors thank Dr. R. MATSU'URA for the program "AFT12" for the Ogata's method. The authors thank Dr. F. TAJIMA of University of California at Berkeley and Dr. S. TSUBOI of the National Defense Academy for their critical reviews.

#### References

- KAMINUMA, K. (1994): Seismic activity in and around Antarctic continent. Terra Antarct., 1(2), 423-426.
- KIKUCHI, M. and YAMANAKA, Y. (1998): Great earthquake near the Antarctic continent on March 25 ( $M_s$  8.0). EIC Seismology Note, No. 41, 3 p. (in Japanese).
- GUTENBERG, B. and RICHTER, C.F. (1944): Frequency of earthquakes in California. Bull. Seismol. Soc. Am., 34, 185–188.
- OGATA, Y. (1983): Estimation of the parameters in the modified Omori formula for aftershock frequencies by the maximum likelihood procedure. J. Phys. Earth, **31**, 115–124.
- NETTLES, M., WALLACE, T.C., BECK, S. and EKSTRÖM, G. (1998): The March 25, 1998 Antarctic plate earthquake (abstract). Eos; Trans., 79, F662–F663.
- UTSU, T. (1961): A statistical study on the occurrence of aftershocks. Geophys. Mag., 30, 521-605.
- UTSU, T. (1965): A method for determining the value of b in a formula log n=a-bM showing the magnitudefrequency relation for earthquakes. Geophys. Bull. Hokkaido Univ., 13, 99–103 (in Japanese with English abstract).
- UTSU, T. (1969): Aftershocks and earthquake statistics (I). J. Fac. Sci., Hokkaido Univ., Ser VII, 3, 129-195.
- WIENS, D.A., WYSESSION, M.E. and LAWVER, L. (1998): Recent oceanic intraplate earthquake in Balleny Sea was largest ever detected. Eos; Trans., 79, 353-354.

(Received February 15, 1999; Revised manuscript accepted April 12, 1999)