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Abstract: Measurements of ice thickness were carried out by a ship-borne electromag-
netic induction instrument mounted on the R/V Xuelong during the Second Chinese
National Arctic Research Expedition (CHINARE-2003) in summer 2003 in the Chukchi
Sea. A 1-D multi-layer model, consisting of three layers of snow, ice and seawater, was
used to calculate the total thickness of snow and sea ice. The time series of total thickness
from 24 August to 7 September 2003 indicates that deformed and second-/multi-year ice
floes appear frequently in very close pack ice farther from the ice edge, while thinner ice
floes less than 1 m are frequently found in open pack ice. The probability density function
of total thickness shows that a major peak appears at around 1.5 m thickness in very close
pack ice, presumably corresponding to second-year or deformed ice. Also shown is a peak
at around 0.3 m thickness, corresponding to typical level ice in open pack ice.
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1. Introduction

The Arctic is recognized to be an important environment in the global climate system.
Observational evidence of atmospheric and climate-sensitive variables such as sea ice,
ocean water masses, river discharge, snow cover, glaciers and permafrost indicates that a
reasonably coherent portrait of late 20th century change in the Arctic and sub-Arctic is
apparent (e.g., Bobylev et al., 2003).

In the context of the International Arctic Science Committee (IASC)’s research priori-
ties, the First and Second Chinese National Arctic Research Expeditions were organized in
1999 and 2003, respectively, to conduct a variety of scientific programs in the Bering Sea,
the Chukchi Sea and the Canadian Basin of Arctic Ocean. One of the research programs
was to understand the process of the Arctic sea ice change and its influence on the
air/sea/sea ice exchange.
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Fig. 1. The tracks of the R/V Xuelong (solid line) during the period from 19 August to 9
September 2003 in the Chukchi Sea. The dashed line shows the ice edge, derived from
DMSP SSM/I data at the end of August 2003.

The objective of the present study was to measure the thickness of sea ice by the ship-
borne electromagnetic induction instrument (hereafter denoted as SEM) mounted on the
R/V Xuelong during the Second Chinese National Arctic Research Expedition (CHINARE-
2003). SEM observations were conducted during the period from 19 August to 9 September
2003. Figure 1 indicates the tracks of the R/V Xuelong during SEM observations in the
Chukchi Sea, together with the ice edge derived from DMSP SSM/I data at the end of
August 2003.

2. Measurements

Combining an electromagnetic induction (EM) instrument with a laser altimeter is a
widely used technique for measuring sea ice thickness from icebreakers (e.g., Kovacs and
Morey, 1991; Haas et al., 1997; Worby et al., 1999; Uto et al., 2002). The ship-borne EM
(SEM) utilized in the present study was a single frequency EM sensor (EM-31/ICE,
Geonics Ltd., Canada), having two coils; a transmitter (Tx) and a receiver (Rx) at both
ends. It can measure the distance from the sensor to the bottom of sea ice; namely the ice-
water interface, in other words the surface of sea water. A laser altimeter (LD90-3100HS,
Riegl Japan Ltd., Japan) detects the distance from the sensor to the top surface of snow or
ice. Figure 2a is a schematic of ice thickness measurements by the SEM. The operating fre-
quency is 9.8 kHz, and the distance between Tx and Rx is 3.66 m. The Tx generates an
alternating primary magnetic field H, and induces small eddy currents in the underlying
seawater. These currents generate a secondary magnetic field Hs, which is sensed along
with H, by Rx. The EM instrument automatically transforms the measured quadrature
response of H, to the apparent conductivity o, in mS/m (McNeill, 1980). o, is defined as
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Fig. 2. a) Principle of SEM measurement of total thickness of snow and sea ice. EM31 is an electromagnet-
ic induction sensor, and LD90 is a laser distance sensor. Zg, Z1, Zs, and Z; are distances from the
sensor to the ice bottom, the snow surface, the snow depth and the ice thickness, respectively.

b) The ship-borne electromagnetic induction instrument (SEM) onboard the R/V Xuelong.

_ 4 (A,
o= wuoer(Hp), ()

where o, o, r, and Q (Hs/H},) denote the magnetic permeability of free space (47X 107
H/m), angular frequency (w = 27xf ), transmitter-receiver coil separation (3.66 m) and the
quadrature component of the ratio of H; to H, at Rx, respectively. The frequency (f) is 9.8
kHz.

Since the difference in conductivity between snow and ice is very small, the EM
instrument cannot distinguish snow from ice. Therefore, we discuss the relationship between
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0, derived from SEM measurements and the observed total thickness of snow and ice (Zs+
Z1, where Zs is the snow depth and Z; is the ice thickness). The total thickness can be calcu-
lated by subtracting the distance between the EM sensor and the snow/ice surface (Z;) mea-
sured by a laser altimeter from the distance between the EM sensor and the seawater sur-
face (Zg).

0. can be measured in either the horizontal coplanar (HCP) mode or the vertical copla-
nar (VCP) mode of the EM instrument. In the present study we used the latter mode, since
it has a finer lateral resolution than the HCP mode and possesses a high capability of distin-
guishing thin ice (Reid ef al., 2003). According to Reid and Vrbancich (2004), the footprint
size for the VCP geometry is 1.4-1.5 times larger than Zg; i.e. when sounding a 6-m-thick
ice ridge at an instrument height of 4 m (Zg = 10 m), the apparent footprint size for the VCP
mode is 14-15 m. Therefore, the instrument should be placed 5.6-6.0 m away from the ship
hull for the VCP mode at an operating height of 4 m (Fig. 2b), so that the effect of the ship
hull can be prevented from affecting the observed data.

2.1. Calibration and core sampling

The output of the EM instrument was calibrated by measuring stepwise changes of
sensor height over a 2.39-m-thick multi-year ice floe covered with a 0.26-m-deep snow
layer on 29 August. The relation between the apparent conductivity (o,) and the distance
between the EM instrument and the seawater surface (Zg) is shown in Fig. 3a.

Snow, ice and seawater samples were collected from the site where the EM instrument
was calibrated. The ice temperature was measured in-sifu using a thermistor stick inserted
into holes drilled at 5 or 10-cm intervals in the sample cores. These ice cores were cut into
5 to 10-cm sections and melted out on the ship. Sea-ice conductivity (o7) was measured
from the melted ice water. The snow density and temperature were measured at 1-3 cm
vertical intervals, and snow conductivity (0s) was measured from the melted samples. Ship-
based CTD profile data were used for seawater conductivity (Gw). Finally, the values of Zs,
Z1, Os, 01, and ow were derived as 0.26 m, 2.39 m, 0 mS/m, 15 mS/m, 2270 mS/m, respec-
tively. The conductivity values of ice and seawater obtained in the present study were
smaller than those previously obtained in spring and summer in the Arctic and sub-Arctic
(Tateyama et al., 2006). In the present study, significant desalination might have occurred
as the ice core samples were obtained from the second-/multi-year ice floes and less saline
waters were found just below the ice prior to the onset of freezing.

2.2. Data reduction

A method to calculate Zs+Z; from o, by using a 1-D multi-layer model was proposed
by Haas et al. (1997) and Haas (1998). In the present study, we used a theoretical calcula-
tion program, PCLOOP developed by Geonics Ltd. (McNeill, 1980) to calculate o, using
the 1-D multi-layer model, which consists of three layers, snow (Zs, OsguLk), ice (Z1, OiBuLk)
and seawater (infinite depth, ow). The instrument height (Z;) was also included in this
model.

The 0,—Zg transform equation is based on an empirical approximation of the analytical
equation for the measured electromagnetic field. An approximation for the inversion model,
which calculates Zg from o, is commonly used and gives stable results (Pfaffling er al.,
2004).
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Fig. 3a. The o6,Zg relationship derived from chang- Fig. 3b. The relationship between Zg values obtained
ing the EM instrument height in the Chukchi from in-situ measurements and those calcu-
Sea. The solid curve is an exponential fit. lated from eq. (2).
Zr=ap—In (O'afcll)/az, (2)

where a, are coefficients. The 0,—Zg relationship was derived from calibrations done by
varying the SEM instrument height over the 2.39-m-thick multi-year ice floe covered with a
0.26-m-deep snow layer, as shown in Fig. 3a. From the 1-D multi-layer model, ao, a; and a,
were derived as 13.47, 5.19 and 0.48, respectively.

The comparison between Zg values measured in-situ and those estimated from eq. (2)
is shown in Fig. 3b. Estimated Zg values agree well with the measured ones within 8%
error.

3. Results and discussion

SEM ice thickness data were obtained for 24-29 August and 4-7 September 2003.
First, the time series of 0, records obtained at the sampling rate of 10 Hz were processed
with a 1001st low-pass digital filter, which cuts off the signal higher than 0.5 Hz, in order to
reduce the noise level from O db to —80 db. Those noises might be induced from the sig-
nal/power cable. After removing the noises, the total ice thickness was then calculated by
subtracting Z;, from Zg estimated by eq. (2).

The time series of total thickness was combined with the time series of GPS (Global
Positioning System) position of the EM instrument obtained at the sampling interval of 0.5
Hz. The total thickness is shown as a function of time for 24-29 August and from 4-7
September, in Figs. 4 and 5, respectively. Thickness values were obtained every 2 s in Figs. 4
and 5 from time 0 (00hOOmMOOs) to 43199 (23h59m58s). The hatched area shows no data.
SEM measurements during the first period in Fig. 4 were carried out in regions farther from
the ice edge (see Fig. 1), which were compact ice fields mainly filled with deformed and
second-/multi-year ice floes. In the beginning of the first period from 24 to 26 August in
Fig. 4, the ship proceeded northward, where approximately 0.3-m-thick ice, 1.5 to 2.0-m-
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During the second period in Fig. 5 the ship sailed along the ice edge (see Fig. 1),
where ice floes less than 1.5-m-thick were dominant in open pack ice. The PDF in Fig. 6b
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Fig. 4. Time series of total ice thickness by SEM measurements from 24 to 29 August 2003. The x-axis shows

time from 0 (00h00mO0s) to 43199 (23h59m58s). The hatched area shows no data.
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Fig. 5. Time series of total ice thickness by

time from 0 (00h00mO0s) to 43199 (23h59m58s). The hatched area shows no data.
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4. Concluding remarks

Measurements of the ice thickness were carried out using a ship-borne electromagnetic
induction instrument (SEM) mounted on the R/V Xuelong during the Second Chinese
National Arctic Research Expedition (CHINARE-2003). SEM observations were conducted
during the period from 19 August to 9 September 2003 in the Chukchi Sea. The SEM data
were reduced to a 1-D multi-layer model, consisting of the three layers snow, ice and sea-
water.

The time series of total (snow plus sea ice) thickness obtained during SEM observa-
tions indicate that deformed and second-/multi-year ice floes appeared frequently in very
close pack ice farther from the ice edge, while thinner ice floes less than 1.5 m were fre-
quently found in open pack ice along the ice edge. The PDFs show that peaks appear at
around 0.3 m, 1.3 to 1.5 m and 3 to 4 m thickness, presumably corresponding to level ice,
deformed or second-year ice, and multi-year ice, respectively.
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