⁴⁰Ar-³⁹Ar AND K-Ar AGES FOR IGNEOUS AND METAMORPHIC ROCKS FROM THE SØR RONDANE MOUNTAINS, EAST ANTARCTICA

Yutaka TAKIGAMI¹ and Minoru FUNAKI²

¹Kanto Gakuen University, 200, Fujiagu, Ohta 373 ²National Institute of Polar Research, 9–10, Kaga 1-chome, Itabashi-ku, Tokyo 173

Abstract: Eight ⁴⁰Ar-³⁹Ar and six K-Ar ages were determined for igneous and metamorphic rocks collected from the Sør Rondane Mountains, East Antarctica. Biotites from granite and syenite show ⁴⁰Ar-³⁹Ar ages of about 500 Ma, which are similar to the reported Rb-Sr age.

K-Ar and ⁴⁰Ar-³⁸Ar ages of 440–480 Ma were obtained for igneous dyke samples and metamorphic rocks.

⁴⁰Ar-³⁹Ar age spectra for K-feldspars, which were separated from the same rocks as biotite, indicate the stair-type patterns.

1. Introduction

In order to investigate the movement of East Antarctica toward other continents of the Gondwana paleoland during the periods of Paleozoic and Precambrian, paleomagnetic studies for the Sør Rondane Mountains had been performed by the 26th and 30th Japanese Antarctic Research Expeditions (JARE-26 and JARE-30). Results of paleomagnetic studies and ⁴⁰Ar-³⁹Ar and K-Ar ages by JARE-26 were reported by TAKIGAMI *et al.* (1987). Further, paleomagnetic results of JARE-30 have been also reported by FUNAKI and TOKIEDA (1990) and TOKIEDA and FUNAKI (1991). To supply age information, ⁴⁰Ar-³⁹Ar and K-Ar datings were performed for igneous and metamorphic rock samples of JARE-30, for which paleomagnetic studies had been made (Fig. 1).

Further, by comparing the present results with the reported age data obtained by the Rb-Sr, U-Pb and K-Ar methods (PICCIOTTO *et al.*, 1964, 1966; TAKAHASHI *et al.*, 1990), we have examined the thermal history for the Sør Rondane Mountains in this study.

2. Geology and Samples

The Sør Rondane Mountains are situated in East Antarctica. They were investigated by Belgian parties (1958–1970) and by Japanese parties (1983–). The area is about $200 \text{ km} \times 75 \text{ km}$ and composed of high grade metamorphic rocks and igneous intrusive rocks. The reported Rb-Sr, U-Pb, ⁴⁰Ar-³⁹Ar and K-Ar dates indicate the following events in this area: the metamorphism of gneiss, about 550 Ma (PICCIOTTO *et al.*, 1964, 1966); the younger intrusive activities, between 440–530 Ma (PICCIOTTO *et al.*, 1964, 1966;

Fig. 1. Sampling sites in the Sør Rondane Mountains (modified after FUNAKI and TOKIEDA, 1990). Open squares and closed circles indicate sampling sites for paleomagnetic studies. Closed circles and triangles indicate sampling sites for age determination in this study and the reported study (TAKIGAMI et al., 1987), respectively.

TAKIGAMI et al., 1987; TAKAHASHI et al., 1990); another thermal event, about 400 Ma (TAKAHASHI et al., 1990).

Samples for ⁴⁰Ar-³⁹Ar and K-Ar studies were selected from those used for paleomagnetic studies (MORIWAKI *et al.*, 1989), considering the good stability of Natural Remanent Magnetization (NRM) at AF demagnetization (Fig. 1). In Table 1, we list sample name used in this study, sampling site number used in JARE-30 (MORIWAKI *et al.*, 1989), site name, rock type, mineral and sample number in the paleomagnetic study (FUNAKI and TOKIEDA, 1990; TOKIEDA and FUNAKI, 1991).

Biotite and K-feldspar were separated by hand picking from crushed rock samples (32-64 mesh). B722 \ddagger is the crushed sample (32-64 mesh) from which biotite was removed and the main constituent minerals are K-feldspar, quarts, plagioclase, titanite and blue-green hornblende. Whole rock samples were cut into cylindrical shapes of about 10 mm \times 7 mm ϕ .

Constituent minerals of each rock are given in Appendix.

Sample ⁽¹⁾ name	Site name	Site ⁽²⁾ number	Rock type	Mineral	(Sample number) ⁽³⁾
⁴⁰ Ar- ³⁹ Ar method					
B 414 B T	Pingvinane	MPn4	Granite	Biotite	(B414)
B 722 BT	Lunckeryggen	ML2	Granite	Biotite	(B 722)
B 722#				No Biotite	(B 722) ⁽⁴⁾
B7 40 BT	Lunckeryggen	ML3	Syenite	Biotite	(B 7 40)
B740K F				K-feldspar	(B 7 40)
B 788 BT	Lunckeryggen	ML4	Syenite	Biotite	(B 788)
B788KF				K-feldspar	(B 788)
B 858	Brattnipene	MB3	Basalt (dyke)	Whole rock	(B858)
K-Ar method					
B 1 BT	Selungen		Qz Monzonite	Biotite	(B1)
	(Seal rock)		(dyke; B1 intrudes	into B5)	
B 5 BT	Selungen (Seal rock)		Qz Syenite	Biotite	(B5)
B 140 B T	Otto Borchgrevink	MO1	Gneiss	Biotite	(B 140)
B 209 BT	Nils Larsenfjellet	MN1	Gneiss	Biotite	(B209)
B 907	Vesthaugen	<u></u>	Hornfels	Whole rock	(B907)
B9 10	Vesthaugen		Trachybasalt	Whole rock	(B 910)

Table 1. Sample names and rock types.

(1) This sample name is used in this study.

(2) This site number is used in JARE-30 (MORIWAKI et al., 1989).

(3) This sample number is used in the paleomagnetic study (FUNAKI and TOKIEDA, 1990; TOKIEDA and FUNAKI, 1991).

(4) "No Biotite" means the sample from which biotite is removed and the constituent minerals are mainly K-feldspar, quartz, plagioclase, titanite and hornblende.

3. Experiments

3.1. The ⁴⁰Ar-³⁹Ar method

Samples were wrapped in Al foils and sealed in a quartz tube $(70 \text{ mm} \times 10 \text{ mm}\phi)$ together with standard samples (biotite separated from JG-1; K₂O=7.64±0.05 wt%; 90.8±1.7 Ma), CaF₂ and K₂SO₄ in vacuum (about 10⁻¹ Pa). They were irradiated with fast neutrons for 24 hours in the JMTR (Tohoku University) receiving the total neutron flux of about 10¹⁸ n/cm².

Irradiated samples were put in a Mo crucible and gases were extracted at each temperature stepwisely from samples using an induction heater at the Radio Isotope Center, University of Tokyo. Temperature was controlled by the output power of the induction heater by monitoring the temperature of a top part of the Mo crucible with the aid of an optical pyrometer. Each temperature was kept for 70 minutes to extract gases.

Extracted gases were purified with titanium heated up to about 900°C and they were introduced into a Quadrupole Mass Spectrometer (QMS). Ar isotopes were analyzed on the QMS automatically with the use of a micro-computer (TAKIGAMI *et al.*, 1984).

After the correction of the mass discrimination effect, data were further corrected for the K- and Ca-derived interference Ar isotopes to the ⁴⁰Ar, ³⁹Ar and ³⁶Ar, using the

values mentioned below. They have been determined based on Ar isotope data for neutron irradiated K_2SO_4 and CaF_2 .

$$({}^{40}Ar/{}^{39}Ar)_{K} = 0.0787 \pm 0.0004;$$

 $({}^{39}Ar/{}^{37}Ar)_{Ca} = 0.00144 \pm 0.00005;$ $({}^{36}Ar/{}^{37}Ar)_{Ca} = 0.000389 \pm 0.000202.$

Though the error of $({}^{36}Ar/{}^{37}Ar)_{Ca}$ is very large, the influence for the age uncertainty is negligible because of the larger amount of the radiogenic ${}^{40}Ar$ and the small rate of air contamination below 5%.

We calculated an ⁴⁰Ar-³⁹Ar age using the *J*-value in the following way:

$$t = \ln({}^{40}\text{Ar}{}^{*/39}\text{Ar}_{K} \times J + 1)/\lambda$$

$$J = (\exp(\lambda \times t_{s}) - 1)/({}^{40}\text{Ar}{}^{/39}\text{Ar})_{\text{standard sample}}$$

where, $\lambda = 5.543 \times 10^{-10}/y$ (STEIGER and JÄGER, 1977), ⁴⁰Ar^{*}; radiogenic ⁴⁰Ar, ³⁹Ar_K; K-derived ³⁹Ar due to neutron irradiation and t_s ; age of standard sample.

3.2. The K-Ar method

Ar gases were analyzed by the same procedure as the ⁴⁰Ar-³⁹Ar method. The amount of radiogenic ⁴⁰Ar was determined based on the sensitivity of the QMS, which was estimated by analyzing the known amount of radiogenic ⁴⁰Ar in the standard sample. Stability of the sensitivity was estimated to be about 1% from the analytical results of standard samples.

The K content was determined by means of a flame photometry and the uncertainty in the listed K indicates the range of reproducibility for experiments on the same sample.

4. Results and Discussions

Table 2, Table 3, Figs. 2a–2h and Fig. 3 show the results of 40 Ar/ 39 Ar analyses and Table 4 indicates the results of K-Ar analyses.

Biotite samples (B414BT, B722BT, B740BT, B788BT) separated from granite and syenite of Pingvinane and Lunckeryggen give good ⁴⁰Ar-³⁹Ar plateau ages of 496–501 Ma (Table 2, Figs. 2a, 2b, 2d and 2f). These ages agree well with one another within their uncertainties and are similar to a Rb-Sr whole rock isochron age $(525 \pm 16(1\sigma) \text{ Ma})$ of Lunckeryggen granite (TAKAHASHI *et al.*, 1990).

The 40 Ar/ 39 Ar total fusion ages of biotite samples are 1–11 million years younger than the plateau ages of about 500 Ma, which may be due to the weak thermal meta-morphism. Accordingly, the K-Ar ages of sample B5BT (492 ± 6 Ma) and B140BT (479 ± 15 Ma), which mean the same ages as the 40 Ar- 39 Ar total fusion ages, are considered to have become young from the original ages of about 500 Ma.

Further, previously reported K-Ar results for gneiss samples of 1117 (551 ± 56 Ma) and 1098 (468 ± 21 Ma) from Brattnipene and Austkampane (TAKIGAMI *et al.*, 1987) might also correspond to the 500 Ma thermal event.

Since the ages of around 500 Ma were often obtained from various sites such as Lunckeryggen, Pingvinane, Selungen, Otto Borchgrevink and Brattnipene, the intrusive igneous activity of about 500 Ma seems to have occurred widely in the Sør Rondane Mountains area.

Step No.	Temperature (°C)	$^{40}{ m Ar}$ (× 10 ⁻⁶ cm ³ /g)	$^{36}Ar/^{40}Ar$ (×10 ⁻⁴)	$^{37}Ar/^{40}Ar$ (×10 ⁻³)	³⁹ Ar/ ⁴⁰ Ar (×10 ⁻²)	³⁹ Ar (%)	$^{40}\mathrm{Ar}^{*/39}\mathrm{Ar}_{\mathrm{K}}^{(1)}$ (×10 ⁻²)	Age ⁽²⁾ (Ma)
1	600	1.69	8.325 + 0.286	1.665 + 0.103	2.520 + 0.017	3.3	29.86 + 0.40	179.5 + 4.1
2	700	4.18	1.188 + 0.060	0.4151 +0.0192	1.161 + 0.007	3.8	83.04 +0.55	460.8
3	800	10.7	1.852 +0.048	0.1692 + 0.0169	1.047 + 0.006	8.7	90.24 +0.50	495.7 +9.0
4	9 00	18.4	0.1817 +0.0099	0.2546 ± 0.0126	1.100 + 0.005	15.8	90.33	496.2 +8.9
5	98 0	11.4	0.2155 +0.0085	0.3069 +0.0143	1.097 +0.007	9.8	90.49	496.9 +9.2
6	1060	16.1	0.2678 +0.0058	1.929 +0.052	1.075 +0.006	13.5	92.30 +0.55	505.5 +9.2
7	1120	45.0	0.1216 + 0.0043	1.226 +0.011	1.096 +0.004	38.5	90.87 +0.34	498.7
8	1200	6.71	0.4224 +0.0167	6.854 +0.145	1.100 + 0.006	5.7	89.86 + 0.45	493.7 +9.0
9	1500	1.30	8.428 ± 0.185	2.011 ± 0.068	0.8800 ± 0.0086	0. 9	85.32 ± 1.04	471.9 ± 9.8
Tota		116	0. 5904	1.293	1.110	100.0	88.47	487.2 ±8.6
 M. CONTRACTOR AND INCOME. 	a second of a subscription Addition speed way have assumed as an and the							

Table 2. Analytical data of ⁴⁰Ar-³⁹Ar ages.

Sample	B414BT	(0.1287	g; $J = 0.003504 \pm 0.000087$)
--------	--------	---------	----------------------------------

Step No.	Temperature (°C)	^{40}Ar (×10 ⁻⁶ cm ³ /g)	$^{36}Ar/^{40}Ar$ (×10 ⁻⁴)	³⁷ Ar/ ⁴⁰ Ar (×10 ⁻³)	³⁹ Ar/ ⁴⁰ Ar (×10 ⁻²)	³⁹ Ar (%)	${}^{40}{ m Ar^{*/39}Ar_{K}^{(1)}} (imes 10^{-2})$	Age ⁽²⁾ (Ma)
1	600	0. 391	14.87 ± 0.45	5.627 ±0.367	1.247 ± 0.015	0.3	45.01 ± 1.20	266.2 ± 8.2
2	700	2.43	5.456 ±0.109	1.138 ± 0.035	1.114 ± 0.006	1.4	75.26 ± 0.50	$\begin{array}{r} 425.6 \\ \pm 7.9 \end{array}$
3	800	8.54	3.690 ± 0.052	0.3992 ±0.0153	1.018 ± 0.004	4.4	87.49 ± 0.41	486.2 ± 8.7
4	900	26.9	0.2846 ± 0.0080	0.1574 ± 0.0083	1.103 ± 0.005	15.1	89.83 ±0.44	497.6 ±8.9
5	9 10	11.0	0.1725 ± 0.0089	0. 1459 ±0. 0112	1.112 ± 0.006	6.2	89.36 ±0.48	495.3 ±8.9
6	1000	20.4	0.1706 ± 0.0079	0.1135 ±0.0119	1.098 ± 0.005	11.4	90.56 ± 0.42	501.1 ± 8.9
7	1100	26.5	0.1628 ± 0.0065	0.2412 ± 0.0063	1.098 ± 0.004	14.9	90.55 ±0.34	501.0 ± 8.8
8	1200	38.8	0.1324 ± 0.0079	0.2175 ± 0.0082	1.098 ± 0.006	21.8	90.62 ±0.49	501.4 ±9.0
9	1300	37.4	0.1533 ± 0.0026	1.454 ± 0.025	1.081 ± 0.006	20.6	92.07 ± 0.48	508.4 ±9.1
10	1500	7.20	1.511 ± 0.060	5.133 ±0.126	1.058 ± 0.005	3.9	90.35 ± 0.43	499.9 ±8.9
Tota	1	180	0. 4996	0.6834	1.091	100.0	90.24	499 .6 ±8.7

 \pm in values are errors of one standard deviation.

The uncertainties in ages and ${}^{40}\text{Ar}^*/{}^{39}\text{Ar}_K$ ratio do not include those of correction factors for K- and Ca- derived interference isotopes.

(1) ${}^{40}\text{Ar}^*$ and ${}^{39}\text{Ar}_{\text{K}}$ means the radiogenic ${}^{40}\text{Ar}$ and the K-derived ${}^{39}\text{Ar}$, respectively. (2) ${}^{40}\text{Ar}^{-39}\text{Ar}$ ages were calculated by using following constants. $\lambda_e = 0.581 \times 10^{-10}/\text{y}$, $\lambda_{\beta} = 4.962 \times 10^{-10}/\text{y}$. $\frac{10^{-10}/y}{10^{-10}/y}, \frac{40}{K/K} = 1.167 \times 10^{-4} \text{ (STEIGER and JÄGER, 1977).}$ (3) "n.d." represents "not determined" owing to the small amount of ³⁷Ar.

Step No.	Temperature (°C)	^{40}Ar (×10 ⁻⁶ cm ³ /g)	³⁶ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	³⁷ Ar/ ⁴⁰ Ar (×10 ⁻³)	³⁹ Ar/ ⁴⁰ Ar (×10 ⁻²)	³⁹ Ar (%)	$^{40}Ar^{*/89}Ar_{K}^{(1)}$ (×10 ⁻²)	A ge ⁽²⁾ (Ma)
1	600	1.17	2.746	0.6691	0.9885	1.1	92.89	528.1
			± 0.053	± 0.0821	± 0.0064		± 0.62	± 9.6
2	700	3.71	0.7423	0. 5770	1.427	5.2	68.49	403.6
			± 0.0215	± 0.0354	± 0.005		± 0.24	± 7.3
3	800	4.88	1.575	0.5772	1.382	6.6	68.95	406.0
			± 0.027	± 0.0292	± 0.006		± 0.29	±7.4
4	900	11.2	0.1794	1.092	1.354	14.9	73.41	429.4
			± 0.0053	± 0.019	± 0.006		± 0.31	± 7.8
5	98 0	7.75	0. 3931	1.025	1.345	10.3	73.42	429.4
			± 0.0111	± 0.034	± 0.009		± 0.49	± 8.0
6	1060	6.85	0. 1722	1.513	1.316	8.9	75.57	440.6
			± 0.0046	± 0.019	± 0.006		± 0.33	±7.9
7	1120	7.04	0.3558	1.551	1.267	8.8	78.05	453.4
			± 0.0113	± 0.042	± 0.005		± 0.32	± 8.1
8	1200	13.0	0. 4901	1.969	1.211	15.4	81.33	470.1
			± 0.0088	± 0.027	± 0.005		± 0.33	± 8.4
9	1300	20.9	0.6019	2.819	1.176	24.1	83.48	481.0
			± 0.0116	± 0.034	± 0.007		± 0.53	± 8.8
10	1500	4.30	0.9236	10.42	1.112	4.7	87.67	501.9
			± 0.0119	±0.19	± 0.005		± 0.38	±8.9
Tota		80.7	0.5609	2.185	1.260	100.0	78.19	454.1
								± 8.1

Table 2. (Continued)

Sample B722# (0.3962 g; $J=0.003661\pm0.000073$)

Step No.	Temperature (°C)	^{40}Ar (×10 ⁻⁶ cm ³ /g)	³⁶ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	³⁷ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	³⁹ Ar/ ⁴⁰ Ar (×10 ⁻²)	³⁹ Ar (%)	$^{40}Ar^{*/39}Ar_{\kappa}^{(1)}$ (×10 ⁻²)	Age ⁽²⁾ (Ma)
1	600	5.77	33.60 ± 0.53	2.003 ± 0.139	0.03272 ± 0.00045	0.1	21.92 ± 47.44	131.5 ± 275.1
2	700	0. 706	13.94 + 0.46	15.67 +1.75	-0.8610 + 0.0086	0.3	68.27 +1.73	382.2 +11.2
3	800	9.85	27.09 +0.33	4.995 +0.247	0.2468 +0.0012	1.2	80.79 + 3.92	444.3 + 20.7
4	9 00	9.78	2.788 +0.038	0.2850 +0.0307	1.015 +0.006	4.9	90.35	490.4
5	980	15.1	0.3058	n.d. ⁽³⁾	1.089 +0.004	8.1	90.93 +0.38	493.2 +9.0
6	1060	14.3	0.6876 +0.0153	n.d.	1.072	7.5	91.35 +0.40	495.1
7	1120	13.4	0.1428	1.240 +0.099	1.080 +0.004	7.1	92.16 +0.34	499.0
8	1200	32.0	0.2373	0.6493	1.072	16.8	92.57 +0.58	500.9 +9.4
9	1300	61.8	0.2272	0.4244	1.069	32.4	92.81	502.1
10	1500	41.8	0.7738 +0.0136	2.887 +0.051	1.054 +0.005	21.6	92.66 + 0.47	± 9.1 501.4 ± 9.2
Tota	1	205	2.778	1.266	0.9966	100.0	92.03	498.4 ± 9.0

Step No.	Temperature (°C)	^{40}Ar (×10 ⁻⁶ cm ³ /g)	³⁶ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	³⁷ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	³⁹ Ar/ ⁴⁰ Ar (×10 ⁻²)	³⁹ Ar (%)	$^{40}Ar^{*/39}Ar_{K}^{(1)}$ (×10 ⁻²)	Age ⁽²⁾ (Ma)
1	500	0.223	12.07 +0.49	n.d. ⁽³⁾	0.3791 + 0.0093	0.1	169.6 + 5.7	826.3 +26.0
2	600	1.62	3.452	8.290	0.4087	0.3	219.7 + 2 3	1012 + 18
3	700	1.90	± 0.6031	n.d.	1.327	1.3	73.94	407.3
4	800	4.72	± 0.0236 4.441	4.076	± 0.007 1.205	3.0	± 0.40 72.03	\pm 7.7 397.8
5	880	9.17	± 0.079 0.4124	± 0.475 n.d.	± 0.008 1.347	6.6	± 0.31 73.23	\pm 7.7 403.8
6	960	12.6	± 0.0147 0.2769	0.7682	± 0.007 1.321	8.9	± 0.39 75.00	± 7.6 412.5
7	1020	7.49	± 0.0105 0.1478	±0.1037 0.5918	± 0.006 1.317	5.3	± 0.34 75.52	$\begin{array}{r}\pm 7.7\\415.0\end{array}$
8	1100	7.91	± 0.0096 0.4625	± 0.0788 1.300	± 0.008 1.270	5.4	± 0.44 77.60	\pm 7.9 425.2
9	1200	21.0	±0.0203 0.2177	± 0.087 0.3282	± 0.007 1.227	13.8	± 0.43 80.89	± 8.0 441.2
10	1500	87.9	± 0.0093 0.3493	± 0.0345 0.5265	± 0.004 1 178	55 3	± 0.28 83.94	± 8.1
			± 0.0050	± 0.0190	± 0.004		± 0.27	± 8.3
Tota	1	155	0.5027	0.7132	1.211	100.0	81.27	443.1 ± 8.1

Table 2.	(Continued)
----------	-------------

Sample B740KF (0.1319 g; $J=0.003425\pm0.000070$)

Sample B788BT	(0.1374g;	$J = 0.003385 \pm 0.000069$
---------------	-----------	-----------------------------

Step No.	Temperature (°C)	^{40}Ar (×10 ⁻⁶ cm ³ /g)	³⁶ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	³⁷ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	³⁹ Ar/ ⁴⁰ Ar (×10 ⁻²)	³⁹ Ar 4 (%)	$^{0}\text{Ar}^{*/^{39}}\text{Ar}_{\mathbf{K}}^{(1)}$ (× 10 ⁻²)	Age ⁽²⁾ (Ma)
1	500	0.0199	13.95	123.6	1.232	0.01	48.38	270.6
			± 1.01	± 4.6	± 0.045		± 3.00	± 16.6
2	600	1.01	14.79	13.07	1.425	0.8	39.50	226.1
			± 0.34	± 0.38	± 0.013		± 0.78	± 6.0
3	700	1.13	6.207	5.045	1.178	0.7	69.26	379.8
			± 0.235	± 0.157	± 0.007		± 0.72	± 7.9
4	800	10.6	2.804	1.773	1.039	5.7	88.18	471.2
			± 0.064	± 0.055	± 0.004		± 0.42	± 8.7
5	880	8.44	0.8031	0.6809	1.068	4.6	91.32	485.9
			± 0.0503	± 0.0293	± 0.007		± 0.65	± 9.2
6	96 0	12.6	0.5725	1.087	1.078	7.0	91.16	485.1
			± 0.0174	± 0.030	± 0.005		± 0.40	± 8.9
7	1040	21.6	0.5317	1.478	1.019	11.3	96.52	510.0
			± 0.0123	± 0.039	± 0.003		± 0.33	± 9.2
8	1120	31.3	0.2182	1.197	1.073	17.3	92.52	491.5
			± 0.0032	± 0.019	± 0.005		± 0.43	± 9.0
.9	1200	49.0	0.1729	0.5945	1.061	26.7	93.72	497.1
			± 0.0034	± 0.0175	± 0.004		± 0.35	± 9.0
10	1500	48.6	1.032	3.674	1.037	25.9	93.43	495.6
			± 0.014	± 0.052	± 0.005		±0.42	± 9.1
Total		184	0.7750	1.826	1.055	100.01	92.54	491.6
	_							\pm 8.8

Step No.	Temperature (°C)	⁴⁰ Ar (×10 ⁻⁶ cm ³ /g)	³⁶ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	³⁷ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	³⁹ Ar/ ⁴⁰ Ar (×10 ⁻²)	³⁹ Ar (%)	$^{40}Ar^{*/39}Ar_{K}^{(1)}$ (×10 ⁻²)	Age ⁽²⁾ (Ma)
1	600	3.48	2.760 ±0.079	0.5711 ± 0.0720	0.7791 ±0.0089	1.1	117.8 ± 1.4	599.8 ±12.0
2	700	3.39	0.6774 ± 0.0321	n.d. ⁽⁸⁾	1.440 ± 0.011	2.0	67.97 ±0.53	369.8 ± 7.3
3	800	5.62	6.255 ±0.115	2.117 ±0.249	1.164 ± 0.006	2.7	69.95 ±0.46	379.6 ± 7.4
4	900	12.3	0.3285 ± 0.0132	n.d.	1.379 ±0.005	7.0	71.75 ± 0.25	388.4 ± 7.2
5	1000	15.0	0.4454 + 0.0099	n.d.	1.357 +0.006	8.4	72.66 ± 0.31	392.8 + 7.4
6	1100	18.3	0.2694 + 0.0063	0.3620 + 0.0337	1.331 + 0.006	10.1	74.46 +0.34	401.5 + 7.5
7	1200	41. 1	0.3329 + 0.0053	0.6689 +0.0272	1.130 + 0.006	22.1	76.23 +0.36	410.0 + 7.7
8	1300	48.1	0.2575 + 0.0051	0.2949 +0.0299	1.273 +0.004	25.4	77.90 + 0.27	418.0 + 7.7
9	1400	33.6	0.4024 +0.0058	n.d.	1.222 +0.006	17.0	80.81 +0.41	431.9
10	1 500	8.60	1.356 ± 0.026	1.950 ±0.147	1.181 ± 0.005	4.2	81.20 ± 0.35	433.8 ± 8.1
Tota	1	189	0. 6014	0. 4166	1.275	100.0	76.96	413.5 ± 7.6

Table	2.	(Continued)
1 4010	2.	(Commune)

Sample B788KF (0.1367 g; $J=0.003348\pm0.000068$)

Sample B858 (0.7751 g; J=0.003582±0.000071)

Step No.	Temperature (°C)	⁴⁰ Ar (×10 ⁻⁶ cm ³ /g)	³⁶ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	³⁷ Ar/ ⁴⁰ Ar (×10 ⁻²)	³⁹ Ar/ ⁴⁰ Ar (× 10 ⁻²)	³⁹ Ar (%)	$^{40}Ar^{*/39}Ar_{K}^{(1)}$ (×10 ⁻²)	Age ⁽²⁾ (Ma)
1	600	1.46	1. 199	0.4031	0.2472	0.6	391.3	1581
			± 0.027	± 0.0052	± 0.0017		± 2.7	± 22
2	700	0.795	1.416	1.521	0.8558	1.2	112.5	610.3
			± 0.050	± 0.022	± 0.0058		± 0.8	±10.9
3	800	3.14	1.228	1.466	0. 9 427	5.4	102.7	564.5
			± 0.017	± 0.016	± 0.0045		± 0.5	± 9.9
4	900	9.13	0.2212	1.027	1.161	19.2	85.77	483.1
			± 0.0071	± 0.012	± 0.007		±0.49	± 8.8
5	98 0	10.6	0.1464	0.8674	1.160	22.3	85.96	484.0
			± 0.0020	± 0.0096	± 0.005		± 0.37	± 8.6
6	1060	5.78	0.2296	0. 9966	1.113	11.7	89.44	501.1
			± 0.0050	± 0.0088	± 0.006		± 0.47	± 9. 0
7	1120	4.16	0.6774	2.086	1.097	8.3	89.87	502.9
			± 0.0214	± 0.020	± 0.004		± 0.36	± 8.9
8	1200	6.54	0.2449	1.014	1.081	12.8	92.06	513.9
			± 0.0045	± 0.009	± 0.005		± 0.46	± 9.1
9	1300	11.2	0.2869	1.934	0.8965	18.3	111.3	604.5
			± 0.0054	± 0.018	± 0.0042		± 0.5	± 10.5
10	1 500	0.278	18.77	4.217	0.3378	0.2	136.4	714.4
			±0.39	± 0.063	± 0.0025		± 3.6	±19.7
Total	· · ·	53.1	0.4601	1.298	1.038	100.0	95.27	529.7
								± 9.2

Sample name	Plateau age (Ma)	(temperature; released ³⁹ Ar)	Total fusion age (Ma)	Minimum age (Ma)
B 414 B T	498.5 ± 8.8	(800–1200°C; 92.0%)	487.2 ± 8.6	
B 722 BT	501.1 ± 8.7	(800-1500°C; 98.3%)	499.6±8.7	
B 722#			454.1 ± 8.0	405.0 ± 7.3
B 740 BT	499.7±9.0	(900-1500°C; 98.4%)	498.4 <u>+</u> 9.0	
B740KF			443.1±8.1	402.6 ± 7.7
B 788 BT	495.7±8.9	(880–1500°C; 92.8%)	491.6±8.8	
B788K F			413.5±7.6	369.8±7.3
B 858	isochron age 4	76.3 ± 22.6 Ma	529.7±9.2	
1123(1)	439 ± 13	(900-1500°C; 99.3%)	438 ± 13	
1120(2)			412±13	355±11

Table 3. Summary of ⁴⁰Ar-³⁹Ar ages.

 \pm indicates one standard deviation.

(1) Sample 1123; Nunatak 1550; Metadolerite, whole rock (TAKIGAMI et al., 1987).

(2) Sample 1120; Nunatak 1550, Gneiss, whole rock (TAKIGAMI et al., 1987).

A dyke sample of B858 shows the typical excess ⁴⁰Ar age spectrum (U-shape) (Fig. 2h). An isochron plot supports the excess ⁴⁰Ar by the high initial ⁴⁰Ar/³⁶A1 ratio (4541 \pm 2670) and gives an isochron age of 476.3 \pm 22.8 Ma (Fig. 3). Another dyke sample B1BT shows a K-Ar age of 452 \pm 6 Ma. Moreover, the metadolerite dyke sample 1123 of Nunatak 1550 (TAKIGAMI *et al.*, 1987) shows an ⁴⁰Ar/³⁸Ar plateau age of 439 \pm 13 Ma, and K-Ar ages of thermally metamorphosed samples B907 and B910 are 439 \pm 10 Ma and 467 \pm 7 Ma, respectively. Hence, it seems that the thermal activity had continued till about 440 Ma in the northern part of the Sør Rondane Mountains; namely Brattnipene, Vesthaugen, Nunatak 1550 and Selungen.

Since the ages of 440–500 Ma are often obtained in East Antarctica (*e.g.* Lützow-Holm Bay) (HIROI and SHIRAISHI, 1986), the igneous activities of the Sør Rondane Mountains at 440–500 Ma probably represent part of late Ross Orogeny (the Queen Maud Orogeny) (KIZAKI, 1979; SUZUKI, 1986).

B740KF and B788KF (K-feldspar from syenites) and B722# (a fraction without biotite from granite) show ⁴⁰Ar-³⁹Ar stair-type age spectra (Figs. 2c, 2e and 2g). We already reported a similar stair-type spectrum for a gneiss sample (1120: Nunatak 1150) obtained from the same sampling field (TAKIGAMI *et al.*, 1987). Slow cooling mechanism or thermal metamorphism may explain such stair-type age spectra (MC-DOUGALL and HARRISON, 1988).

HARRISON and MCDOUGALL (1982) presented such stair-type age spectra for the microcline samples and explained by the slow cooling (about 5°C/Ma) of the samples. Then, we can calculate the cooling rate of the syenite to be about 2.2° C/Ma from the results of biotite samples (age, 500 Ma; closure temperature, about 350° C) and K-feldspar samples (minimum age, about 410 Ma: closure temperature, about 150° C (for microcline: HARRISON and MCDOUGALL, 1982)). This cooling rate is lower than that of an igneous intrusion (about 5° C/Ma) reported by HARRISON and MCDOUGALL (1982).

The minimum ages in lower termperature fractions are 355-405 Ma and might represent the age of a later weak thermal metamorphism, which has not influenced biotite to degass radiogenic Ar. TAKAHASHI *et al.* (1990) have reported similar K-Ar

Fig. 2. Vertical and horizontal axes indicate the apparent age and the released ³⁹Ar (%). The bands in the age represent errors of one standard deviation. Numerical figure at each column indicates the step number in Table 2.

- (a) The ${}^{40}Ar {}^{39}Ar$ age spectrum for B414BT.
- (b) The ${}^{40}Ar {}^{39}Ar$ age spectrum for B722BT.
- (c) The ⁴⁰Ar-³⁹Ar age spectrum for B722#.
- (d) The ⁴⁰Ar-³⁹Ar age spectrum for B740BT.
- (e) The ⁴⁰Ar-³⁹Ar age spectrum for B740KF.
- (f) The ${}^{40}Ar {}^{39}Ar$ age spectrum for B788BT.
- (g) The ${}^{40}Ar$ - ${}^{39}Ar$ age spectrum for B788KF. (h) The ${}^{40}Ar$ - ${}^{39}Ar$ age spectrum for B858.

131

Fig. 3. The ⁴⁰Ar-³⁶Ar-³⁹Ar/³⁶Ar plot for B858.

Using all temperature fractions except 1300° C, the isochron age is determined to be 476.3 ± 22.6 Ma and the line intercepts the 40Ar/36Ar axis at 4541 ± 2670 .

Sample name	K (wt%)	$^{40}{\rm Ar_{rad}}_{(imes 10^{-5}{\rm cm^3/g})}$	$40 \operatorname{Ar_{air}}^{40} \operatorname{Ar_{total}}_{(\%)}$	Age ⁽¹⁾ (Ma)
B1BT	5.76 ± 0.04	11.3±0.1	5.3	452 ± 6
B5BT	5.63 ± 0.04	12.4 ± 0.1	1.2	492 ± 6
B 140 BT	7.63 ± 0.23	16.0 ± 0.1	3.2	479 ± 13
B 209 BT	7.37 ± 0.25	22.8 \pm 0.2	1.3	662 ± 22
B 907	2.50 ± 0.05	4.84 ± 0.04	0.5	439 ± 10
B 910	1.97 ± 0.03	4.07 ± 0.03	0.1	467 ± 7
1098(2)	1.07 ± 0.04	2.17 ± 0.03	1.8	468 ± 2
1117(3)	0.88 ± 0.03	2.15 ± 0.22	5.4	551 ± 56

Table 4. Summary of K-Ar ages.

 \pm indicates one standard deviation.

(1) K-Ar ages were calculated with the following values (STEIGER and JÄGER, 1977). $\lambda_e = 0.581 \times 10^{-10}/y$, $\lambda_{\beta} = 4.962 \times 10^{-10}/y$, ${}^{40}\text{K/K} = 1.167 \times 10^{-4}$ moles/ mole.

(2) Sample 1098; Austkampane, Gneiss, whole rock (TAKIGAMI et al., 1987).

(3) Sample 1117; Brattnipene, Gneiss, whole rock (TAKIGAMI et al., 1987).

whole rock ages of 406 and 415 Ma for the Lunckeryggen granite. Similar young K-Ar ages of 350–400 Ma were reported for igneous and metamorphic rocks from Ongul Islands, Yamato Mountains and Belgica Mountains (HIROI and SHIRAISHI, 1986). However, as such ages have been determined by the K-Ar method and no clear evidence of the weak metamorphism has been found so far from microscopic examinations for samples used in this study, the possibility for the existence of a weak thermal event at about 350–400 Ma should be clarified by a more sophisticated way in future.

For the Nils Larsen tonalite, TAKAHASHI *et al.* (1990) and PASTEELS and MICHOT (1968) reported a Rb-Sr whole rock isochron age $(956 \pm 20(1\sigma) \text{ Ma})$ and a U-Pb zircon age (about 950 Ma), respectively. In this study, we obtained a K-Ar age of 662 ± 23 Ma for biotite from a gneiss sample (B209). The younger age of gneiss than that of tonalite

may be explained by the several reasons; the different thermal events, the release of radiogenic ⁴⁰Ar by thermal event and/or weathering effect and so on.

5. Summary

(1) ⁴⁰Ar-³⁹Ar plateau ages and K-Ar ages indicate that an intrusive activity occurred at about 500 Ma widely in the Sør Rondane Mountains area.

(2) The igneous activity may have continued to about 440 Ma, especially in the northern part of the Sør Rondane Mountains.

(3) The stair-type age spectra of K-feldspar samples may be caused by the slow cooling of the samples or the weak thermal metamorphism at about 350–400 Ma.

(4) The K-Ar age (662 Ma) for a biotite from gneiss of Nils Larsenfjellet is definitely younger than reported Rb-Sr and U-Pb ages of tonalites from the same area. Several possibilities can be raised to explain the apparent difference in the ages, but it is difficult to specify it at present.

Acknowledgments

We wish to thank Prof. N. UENO, Toyo University, for cooporating in the K measurement and Dr. T. TIBA, National Science Museum, for sample descriptions. We also grateful to Prof. I. KANEOKA for critical reading of the manuscript. This study is financially supported by the Grant-in-Aid for Science Research from the Kanto Gakuen University.

References

- FUNAKI, M. and TOKIEDA, K. (1990): Natural remanent magnetizations of granite and syenite from Pingvinane and Lunckeryggen in the Sør Rondane Mountains, East Antarctica. Proc. NIPR Symp. Antarct. Geosci., 4, 67–79.
- HARRISON, T. M. and MCDOUGALL, I. (1982): The thermal significance of potassium feldspar K-Ar ages inferred from ⁴⁰Ar/³⁹Ar age spectrum results. Geochim. Cosmochim. Acta, **46**, 1811–1820.
- HIROI, Y. and SHIRAISHI, K. (1986): Syowa Kiti shûhen no chishitsu to ganseki (Geology and petrology around Syowa Station). Nankyoku no Kagaku, 5. Chigaku (Science in Antarctica, 5. Earth Sciences), ed. by Natl Inst. Polar Res. Tokyo, Kokon Shoin, 45–84.
- KIZAKI, K. (1979): Nankyoku chigaku no tenbô (The view of the geology of Antarctica). Gekkan Chikyu (Earth Monthly), 1, 883–888.
- McDougall, I. and Harrison, T. M. (1988): Geochronology and Thermochronology by the ⁴⁰Ar/³⁹Ar Method. New York, Oxford University Press, 212 p. (Oxford Monographs on Geology and Geophysics No. 9).
- MORIWAKI, K., FUNAKI, M., HIRAKAWA, K., TOKIEDA, K., ABE, H., HIGASHI, S. and MIYAWAKI, H. (1989): Sêrurondâne Sanchi chigaku·seibutsu chôsatai hôkoku 1988-89 (JARE-30) (Report on the geomorphological, paleomagnetic, geodetic, zoological and botanical field work in the Sør Rondane Mountains, 1988-89 summer season (JARE-30)). Nankyoku Shiryô (Antarct. Rec.), 33, 293-319.
- PASTEELS, P. and MICHOT, J. (1968): Nouveaux résultats géochronologiques obtenus par la méthode U-Pb sur des zircons des Monts Sör-Rondane (Antarctique). Ann. Soc. Géol. Belg., 91, 283– 303.
- PICCIOTTO, E., DEUTSCH, S. and PASTEELS, P. (1964): Isotope ages from the Sør-Rondane Mountains, Dronning Maud Land. Antarctic Geology, ed. by R. J. ADIE. Amsterdam, North-Holland, 570-578.

- PICCIOTTO, E., DEUTSCH, S. and PASTEELS, P. (1966): Measures d'âge par les méthods isotopiques de minéraux et de roches des Monts Sör-Rondane. Exped. Antarct. Belge 1957–1958, Result. Sci., 7(3), 233–266.
- STEIGER, R. H. and JÄGER, E. (1977): Subcommission on geochronology; Convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett., 36, 359–362.
- SUZUKI, M. (1986): Nendai to chishitsu kubun (Geochronology and geological subdivision). Nankyoku no Kagaku, 5. Chigaku (Science in Antarctica, 5. Earth Sciences), ed. by Natl Inst. Polar Res. Tokyo, Kokon Shoin, 10–23.
- TAKAHASHI, Y., ARAKAWA, Y., SAKIYAMA, T., OSANAI, Y. and MAKIMOTO, H. (1990): Rb-Sr and K-Ar whole rock ages of the plutonic bodies from the Sør Rondane Mountains, East Antarctica. Proc. NIPR Symp. Antarct. Geosci., 4, 1–8.
- TAKIGAMI, Y., NISHIJIMA, T., KOIKE, T. and OKUMA, K. (1984): Shijûkyoku shitsuryô bunsekikei no arugon 40-arugon 39 nendai sokuteihô e no ôyô (Application of quadrupole mass spectrometer to the ⁴⁰Ar-³⁹Ar geochronological study). Shitsuryô Bunseki (Mass Spectrosc.), 89, 227–232.
- TAKIGAMI, Y., KANEOKA, I. and FUNAKI, M. (1987): Age and paleomagnetic studies for intrusive and metamorphic rocks from the Sør Rondane Mountains, Antarctica. Proc. NIPR Symp. Antarct. Geosci., 1, 169–177.
- TOKIEDA, K. and FUNAKI, M. (1991): Tilting movement of Sør Rondane Mountains and possible apparent polar-wander path for Precambrian to Cambo-Ordovician from Nils Larsenfjellet. Proc. NIPR Symp. Antarct. Geosci., 5, 61-74.

(Received March 19, 1991; Revised manuscript received May 28, 1991)

Appendix

Rock types and constituent minerals ([]: minor minerals) for each sample are described as below (after T. TIBA)

⁴⁰Ar-³⁹Ar sample

B414: GRANITE

K-feldspar (orthoclase-perthite), biotite (slightly metamorphosed), plagioclase, green hornblende, [quarts, allanite, magnetite, titanite, ilmenite]

B722: GRANITE K-feldspar (microcline), biotite (partly zircon halo), quartz, plagioclase, titanite, blue-green hornblende, [magnetite, apatite] B740: SYENITE

- K-feldspar (orthoclase-perthite, microcline: sieve texture), biotite, titanite, bluegreen hornblende, plagioclase, [quartz, magnetite, apatite]
- B788: SYENITE K-feldspar (orthoclase-perthite, microcline: sieve texture), clinopyroxene, biotite, titanite, blue-green hornblende, [magnetite, apatite, quartz]

B858: fine-grained BASALT (basaltic texture) clinopyroxene, orthopyroxene, plagioclase (slightly metamorphosed), [magnetite, ilmenite, biotite (primally? secondary?), smectite, carbonate]

- K-Ar sample
- BI: Qz-MONZONITE

K-feldspar (orthoclase-perthite, microcline: fresh), biotite (slightly metamorphosed), plagioclase, quartz, hornblende, [magnetite, apatite, clinopyroxene, white mica]

B5: Qz-SYENITE

K-feldspar (orthoclase-perthite), plagioclase, quartz, hornblende, biotite, [zircon, magnetite, apatite, goethite]

B140: GNEISS K-feldspar (orthoclase-perthite, microcline: slightly metamorphosed), plagioclase, quartz, biotite (partly zircon halo), [titanite, zircon, magnetite, apatite, calcite, sericite]

B209: GNEISS

plagioclase, K-feldspar (orthoclase-perthite: slightly sericite), biotite, quartz, hornblende, [titanite, apatite, epidote]

B907: HORNFELS

plagioclase, quarts, biotite, hornblende, titanite, [ilmenite, apatite]

B910: thermally metamorphosed TRACHYBASALT? plagioclase, biotite, ilmenite, hornblende, [apatite]