SURVEY OF ARTIFICIAL RADIONUCLIDES IN THE ANTARCTIC

Takeo HASHIMOTO¹, Takao MORIMOTO¹, Yoshihiro IKEUCHI¹, Katsumi YoshiMizu¹, Tetsuya TORII¹ and Kazuhisa KOMURA²

¹Japan Chemical Analysis Center, 295–3 Sanno-cho, Chiba 281 ²Low Level Radioactivity Laboratory, Kanazawa University, Wake, Tatsunokuchi, Nomi-gun, Ishikawa 923-12

Abstract: In order to estimate the concentration and distribution of the environmental radioactivity in the Antarctic, artificial radionuclides such as ⁹⁰Sr, ¹³⁷Cs, ²³⁸Pu and ²³⁹⁺²⁴⁰Pu in soil, algae, lichen and water samples were determined. The average concentrations of artificial radionuclides in the environmental samples collected from the McMurdo Sound area and around Syowa Staiton during 1984 to 1987, were compared with those in the Northern Hemisphere. Concentrations of artificial radionuclides in the Antarctic for soil, sea water, lichen, oceanic life (krill, *Euphausia superba*), viscera of fish (*Dissostichus mawsonii*), etc. were several times lower than those in the Northern Hemisphere.

1. Introduction

The Antarctic is believed to be the least contaminated area in the world because of the lowest human activity. Measurement of artificial radionuclides in environmental samples in the Antarctic is of interest in order to estimate the global environmental pollution caused by nuclear explosion tests since 1945.

We report here the results of measurement of artificial radionuclides in environmental samples such as soil, algae, lichen, water, etc. These samples were collected from the Dry Valleys area $(77-78^{\circ}S, 160-162^{\circ}E)$ (Fig. 1) and Ross Island $(77^{\circ}51'S, 166^{\circ}45'E)$ (Fig. 2) in the austral summer of 1984–85, 1985–86 and 1986–87, and also around Syowa Station $(69^{\circ}00'22''S, 39^{\circ}35'24''E)$ (Fig. 3) by the 26th Japanese Antarctic Research Expedition in 1985–86 (Table 1).

2. Method

A large volume, 1000 *l*, of water samples were treated by the following two different methods in the field. The one was co-precipitation with iron(III) hydroxide to concentration of Pu isotopes, and the other was adsorption with polyacryronitrile fiber fixed with manganese dioxide and cobalt-potassium ferrocyanide to concentration of γ -ray emitting nuclides such as ¹³⁷Cs, ⁶⁰Co, etc.

Soil samples were dried in an electric oven at 105°C and the fraction having diameter less than 2 mm was collected by sieving. Algae, lichen, krill (*Euphausia superba*), excreta of penguin and viscera of fish (*Dissostichus mawsonii*) were ashed in the electric Artificial Radionuclides in the Antarctic

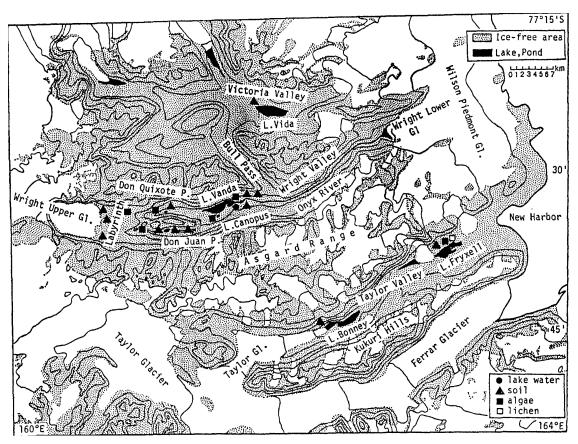


Fig. 1. Sampling location in the Dry Valleys, Antarctica.

furnace at 450°C in 24 h.

Pu isotopes co-precipitated with iron(III) hydroxide were purified by the ion exchange method and determined by α -ray spectrometry with the Si (Au) detector, γ -ray emitting nuclides were determined by γ -ray spectrometry with the Ge detector, and ⁹⁰Sr was purified by fuming nitric acid method and measured with the low background GM counter.

3. Results and Discussion

Analytical results are shown in Table 2. Errors cited in the table consist of only 1σ error due to the counting statistics and no errors from other sources were taken into account.

3.1. Land water

Concentrations of ⁹⁰Sr and ¹³⁷Cs in land water were a little lower than those in lake and river waters in Japan (⁹⁰Sr: 1.5-6.3 [Av.=3.7] Bq/1000*l*, ¹³⁷Cs: 0.1-1.1 [Av.=0.37] Bq/1000*l*) (N.I.R.S., 1985a, b). On the other hand, concentrations of ²³⁹⁺²⁴⁰Pu was higher than those in Japan (²³⁹⁺²⁴⁰Pu: 0.0005-0.001 Bq/1000*l*) (AOYOMA *et al.*, 1986). Little ²³⁸Pu has been detected in those samples in Japan, but this radionuclide was determined in the Antarctic.

Назнімото et al.

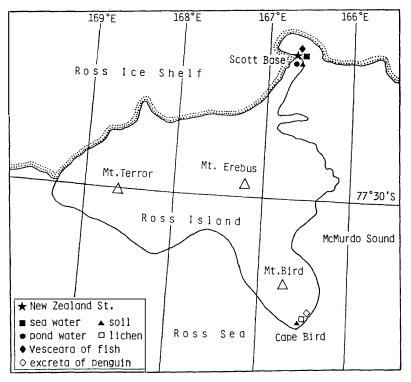


Fig. 2. Sampling location in Ross Island, Antarctica.

3.2. Soil

In spite of the long distance of more than 3000 km between the McMurdo Sound and Syowa Station, the concentrations of 90 Sr, 137 Cs and ${}^{239+240}$ Pu in soil in the two areas were of the same order of magnitude. The concentrations of 90 Sr, 137 Cs and ${}^{239+240}$ Pu in soil were one order of magnitude lower than those in Japan (90 Sr: 0.22-48 [Av.=5.9, n=31] Bq/kg-dry, 137 Cs: 0.37-160 [Av.=22, n=31] Bq/kg-dry) (N.I.R.S., 1985a, b), (${}^{239+240}$ Pu: 0.22-2.5 [Av.=1.3, n=17] Bq/kg-dry) and Northwest Italy (${}^{239+240}$ Pu: 0.059-1.51 Bq/kg) (CIGNA and CIGNA, 1987). 22 Na (24 Bq/kg-dry) was detected in soil at Cape Bird. Perhaps 22 Na produced by cyclotron was brought here for the purpose of some kind of tracer experiment.

3.3. Algae and lichen

Concentrations of ⁹⁰Sr, ¹³⁷Cs, ²³⁹⁺²⁴⁰Pu and ²³⁸Pu in algae and lichen were 2–10 times higher than in soil of Antarctica. Concentrations of ¹³⁷Cs in algae and lichen in the Antarctic were one order of magnitude lower than those in lichen (138–185 Bq/kg-dry) in Canada (64°18′N, 96°3′W) (LOONEY *et al.*, 1986).

Concentrations of ⁹⁰Sr, ¹³⁷Cs and ²³⁹⁺²⁴⁰Pu in algae collected at Lake Canopus during 3 years (⁹⁰Sr: 0.96–1.3 Bq/kg-dry, ¹³⁷Cs: 21–24 Bq/kg-dry, ²³⁹⁺²⁴⁰Pu: 0.48–0.52 Bq/kg-dry) were almost constant.

3.4. Sea water

Concentrations of ⁹⁰Sr and ²³⁹⁺²⁴⁰Pu in sea water in the Antarctic were one order of magnitude lower than those in sea water around Japan and Northern Pacific Ocean

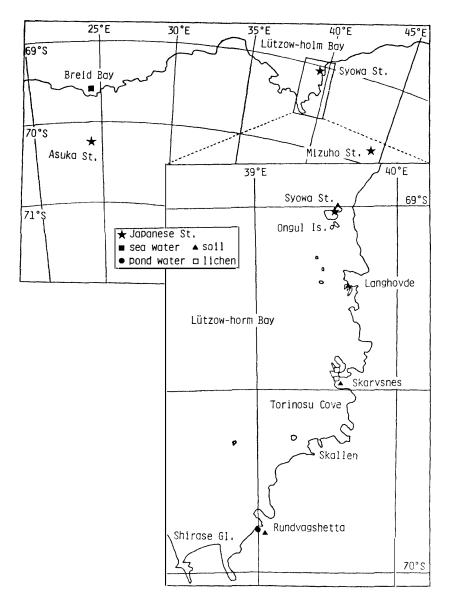


Fig. 3. Sampling location around Syowa Station, Antarctica.

(90 Sr: 1.5–5.2 Bq/1000*l* (SHIBAYAMA *et al.*, 1986), $^{239+240}$ Pu: 0.004–0.03 Bq/1000*l* (NAGAYA and NAKAMURA, 1984). The concentration of 137 Cs in the Antarctic was one to two orders of magnitudes lower than those in sea water (137 Cs: 2.6–7.0 Bq/1000*l* (SHIBAYAMA *et al.*, 1986)) around Japan.

3.5. Krill and viscera of fish

Concentrations of ¹³⁷Cs in krill and viscera of fish were 2–5 times lower than oceanic life around Japan (fish (viscera): 0.22–0.44 Bq/kg-fresh, plankton: 0.074–0.15 Bq/kg-fresh, shrimp: 0.15–0.26 Bq/kg-fresh) (OKUBO *et al.*, 1986).

The ²³⁹⁺²⁴⁰Pu in the land water seems to be supplied from meltwater of a glacier in which ²³⁹⁺²⁴⁰Pu has been accumulated by nuclear explosion tests since 1950. ²³⁸Pu,

HASHIMOTO et al.

St.) St.) St.) St.) St.) Tory Valley St.	Sample	Area	Sample No.	Sampl date		Sampling location	Latitude (S)	Longitude (E)
and vater Ross Is. W 3 Dec. 19, '86 Crater Pond (near McMurdo St) 77°50′20'' 166°40' 15 (37) Dry Valley W 4 Jan. 6, '87 Lake Vanda (near Vanda St.) from Sintase G1.) 77°32' 161°40' Soil Dry Valley S 1 Dec. 9, '84 South Fork (VXE-6 Pond) 77°34' 161°21' Soil Dry Valley S 1 Dec. 9, '84 South Fork (VXE-6 Pond) 77°34' 161°21' S 2 Dec. 9, '84 Don Juan Pond (0~2 cm) 77°34' 161°11' S 5 Dec. 18, '84 Don Quixote Pond (0~2 cm) 77°34' 161°11' S 6 Dec. 18, '84 Don Quixote Pond (0~2 cm) 77°34' 161°11' S 6 Dec. 11, '85 Lake Fryxell 77°51' 160°47' 15 S 10 Dec. 24, '85 Labyrinth (tear Mt. Electra) 77°31' 161°21' S 11 Dec. 19, '86 Contar Dond (basin) 77°31' 161°12' S 11 Dec. 19, '86 Don Juan Pond (chasin) 77°31' 161°11' S 12 Jan. 1, '	Sea water	Ross Is.	W 1	Dec. 17,	' 86	Ross Sea (near Scott Base)	77°51′04″	166°45′23″
St.) St.) St.) St.) St.) Tory Valley St.		Syowa St.				•		
Syowa St. W 5 Jan. 25, '86 Rundvågsheria (running water from Shirase GL) 69°54' 39°01' Soil Dry Valley S 1 Dec. 9, '84 South Fork (SF-1 Pond) 77°34' 161°04' Soil Dry Valley S Dec. 9, '84 South Fork (SF-1 Pond) 77°34' 161°04' S Dec. 14, '84 Labyrinth (L-4 Pond) 77°34' 161°11' S Dec. 9, '84 Don Juan Pond (0~2 cm) 77°34' 161°11' S Dec. 18, '84 Don Quixote Pond (0~2 cm) 77°31' 161°09' S Dec. 11, '85 Lake Fryxell 77°31' 161°01' S Dec. 12, '85 Labyrinth (near Mt. Electra) 77°31' 161°11' S Dec. 29, '86 Don Juan Pond (basin) 77°34' 161°11' S 11 Dec. 29, '86 Don Juan Pond (basin) 77°34' 161°11' S Jan. 1, '87 Taylor Valley (near Bull Pass) 77°31' 161°11' 161°11' S Jan. 1, '87 Caylor Valley (near Bull Pass) <td>Land water</td> <td>Ross Is.</td> <td>W 3</td> <td></td> <td></td> <td>St.)</td> <td></td> <td></td>	Land water	Ross Is.	W 3			St.)		
from Shirase GL) Soil Dry Valley S 1 Dec. 9, '84 South Fork (VSE-6 Pond) 77°34' 161°04' Soil Dry Valley S 1 Dec. 9, '84 South Fork (VXE-6 Pond) 77°34' 161°21' S 2 Dec. 9, '84 Don Juan Pond (0~2 cm) 77°34' 161°11' S 5 Dec. 18, '84 Don Quixote Pond (0~2 cm) 77°31' 161°01' S 7 Dec. 18, '84 Don Quixote Pond (0~2 cm) 77°31' 161°04' S 7 Dec. 18, '84 Don Quixote Pond (0~2 cm) 77°31' 161°04' S 10 Dec. 29, '86 Crater Pond (near McMurdo St.) 77°31' 161°12' S 11 Dec. 19, '86 Crater Pond (near McMurdo St.) 77°31' 161°12' S 12 Dec. 9, '87 Wright Valley (near terminal 77°34' 161°12' S 13 Dec. 19, '86 Crater Pond (ne						· · · · · · · · · · · · · · · · · · ·		
S 2 Dec. 9, '84 South Fork (VXE-6 Pond) 77'34' 161'21' S 3 Dec. 14, '84 Labyrinth (L-4 Pond) 77'32' 160°45' S 4 Dec. 9, '84 Don Juan Pond (0~2 cm) 77'34' 161'11' S 5 Dec. 18, '84 Don Quixote Pond (0~2 cm) 77'34' 161'11' S 6 Dec. 18, '84 Don Quixote Pond (0~2 cm) 77'32' 161'09' S 7 Dec. 18, '84 Don Quixote Pond (0~2 cm) 77'32' 161'09' S 8 Dec. 11, '85 Lake Fryxell 77'34' 161'21' S 10 Dec. 28, '85 Labyrinth (E-3 Pond) 77'34' 161'21' S 11 Dec. 19, '86 Crater Pond (near McMurdo St.) 77'34' 161'21' S 12 Dec. 29, '86 Don Juan Pond (basin) 77'34' 161'21' S 13 Dec. 18, '84 Vale Valey (near Bull Lake) 77'31' 16'2'18' S 14 Jan. 1, '87 Taylor Valey (near Bull Lake) 77'31' 16'2'18' S 15. Jan. 12, '87 Cape Bird 77'6'36'' 166'23' & S 20 Jan. 12, '87 Cape Bird 77'16'36''' 166'23' & S 21 Jan.		Syowa St.	W 5	Jan. 25	, '86		69°54′	39°01′
S 3 Dec. 14, '84 Labyrinth (L-4 Pond) 77°32' 160°45' S 4 Dec. 9, '84 Don Juan Pond (0~2 cm) 77°34' 161°11' S 5 Dec. 9, '84 Don Quixote Pond (0~2 cm) 77°34' 161°01' S 6 Dec. 18, '84 Don Quixote Pond (2~5 cm) 77°34' 161°09' S 7 Dec. 18, '84 Don Quixote Pond (2~5 cm) 77°32' 161°09' S 8 Dec. 11, '85 Lake Fryxell 77°36' 163°06' S 9 Dec. 24, '85 Labyrinth (1c=3 Pond) 77°34' 161°11' S 10 Dec. 29, '86 Don Juan Pond (leasin) 77°34' 161°11' S 11 Dec. 19, '86 Crater Pond (near McMurdo St.) 77°34' 161°11' S 13 Dec. 29, '86 Don Juan Pond (leasin) 77°34' 161°11' S 14 Jan. 1, '87 Taylor Valley (near terminal 77°34' 161°11' S 15 Jan. 9, '87 Wright Valley (near Bull Pass) 77°31' 161°42' S 15 Jan. 9, '87 Wright Valley (near Bull Pass) 77°31' 161°42' S 14 Dac. 12, '87 Cape Bird 77°16'36'' 166°23' & 82'1' 39°40'1' S 20 Jan. 12, '87 Cape Bird 77°16'36'' 166°23' & 82'2' 39°35' S 2	Soil	Dry Valley						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
S 5 Dec. 9, '84 Don Juan Pond (2~5 cm) 77°32' 161°09' S 6 Dec. 18, '84 Don Quixote Pond (0~2 cm) 77°32' 161°09' S 7 Dec. 18, '84 Don Quixote Pond (0~2 cm) 77°32' 161°09' S 8 Dec. 24, '85 Labyrinth (near Mt. Electra) 77°31' 160°44' 14 S 10 Dec. 28, '85 Labyrinth (near Mt. Electra) 77°31' 160°44' 15 S 12 Dec. 29, '86 Don Juan Pond (east side) 77°34' 161°11' S 13 Dec. 29, '86 Don Juan Pond (east side) 77°34' 161°11' S 14 Jan. 1, '87 Taylor Valley (near Bull Lake) 77°43' 162°18' S 15 Jan. 9, '87 Wright Valley (near Bull Lake) 77°13' 161°40' S 10 Ros 18 Jan. 16'2'18' 60°23' 80°27' 160°23' 80°								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							•••	
S 7 Dec. 18, '84 Don Quixote Pond (2~5cm) 77°37 161°09' S 8 Dec. 11, '85 Lake Fryxell 77°31' 47'' 160°44' 14 S 10 Dec. 24, '85 Labyrinth (Le3 Pond) 77°31' 21'' 160°42' 13 S 11 Dec. 28, '85 Labyrinth (Le3 Pond) 77°31' 21'' 160°42' 14 S 11 Dec. 29, '86 Don Juan Pond (east side) 77°34' 161°11' S 12 Dec. 29, '86 Don Juan Pond (heast side) 77°34' 161°11' S 14 Jan. 1, '87 Taylor Valley (near terminal) 77°34' 161°11' S 15 Jan. 9, '87 Wright Valley (near Bull Lake) 77°31' 161°49' S 15 Jan. 10, '87 Lake Vanda (east side) 77°31' 161°49' S 19 Dec. 18, '84 Cape Bird 77°16'36'' 166°23' & 8 S 20 Jan. 12, '87 Cape Bird 77°16'36'' 166°23' & 8 S 20 J								
S 8 Dec. 11, '85 Lake Fryxell 77°36' 163°06' S 9 Dec. 24, '85 Labyrinth (Le-3 Pond) 77°31' 21'' 160°21' 13 S 11 Dec. 28, '85 Labyrinth (near Mt. Electra) 77°31' 21'' 160°21' 13 S 12 Dec. 29, '86 Don Juan Pond (basin) 77°34' 161°12' S 12 Dec. 29, '86 Don Juan Pond (basin) 77°34' 161°12' S 14 Jan. 1, '87 Taylor Valley (near Bull Pass) 77°31' 161°20' S 15 Jan. 9, '87 Wright Valley (near Bull Pass) 77°31' 161°40' S 15 Jan. 9, '87 Wright Valley (near Bull Pass) 77°31' 161°40' S 15 Jan. 10, '87 Lake Vanda (east side) 77°23' 166'49' Ross Is. S 19 Dec. 18, '84 Cape Bird 77°16'36'' 166'23' S 20 Jan. 12, '87 Cape Bird 77°16'36'' 166'23' 8 S 20 Jan. 12, '86 Cape Bird 77°16'36'' 166'23' 8								
S 9 Dec. 24, '85 Labyrinth (E-3 Pond) 77°31' 47" 160°44' 14 S10 Dec. 28, '85 Labyrinth (near ML Electra) 77°31' 21" 160°52' 13 S11 Dec. 19, '86 Crater Pond (near McMurdo St.) 77°53' 161°11' S12 Dec. 29, '86 Don Juan Pond (basin) 77°34' 161°11' S14 Jan. 1, '87 Taylor Valley (near terminal 77°34' 161°21' S15 Jan. 9, '87 Wright Valley (near Bull Pass) 77°31' 161°42' S15 Jan. 9, '87 Wright Valley (near Bull Lake) 77°31' 161°42' S16 Jan. 10, '87 Lake Vanda (east side) 77°31' 161°42' S17 Jan. 10, '87 Lake Vida (west side) 77°31' 161°42' S19 Dec. 18, '84 Cape Bird 77°16' 36'' 166°23' & 8 S20 Jan. 12, '87 Cape Bird (near rookery) 77°16' 36'' 166°23' & 8 Syowa St. S22 Jan. 12, '86 Canghovde (near Lake Nurume) 69°04' 25'' 39°35' 324 Jan 22, '84 South Fork (S								
S10 Dec. 28, %5 Labyrinth (near Mc, Electra) 77°31' 21" 160°52' 13 S11 Dec. 19, %6 Crater Pond (near McMurdo St.) 77°50' 20" 160°52' 13 S12 Dec. 29, %6 Don Juan Pond (east side) 77°34' 161°11' S13 Dec. 29, %6 Don Juan Pond (basin) 77°34' 161°11' S14 Jan. 1, '87 Taylor Valley (near terminal 77°34' 161°41' S14 Jan. 10, '87 Lake Vanda (east side) 77°31' 161°42' S15 Jan. 10, '87 Lake Vanda (east side) 77°32' 161°40' S18 Jan. 10, '87 Lake Vanda (east side) 77°32' 166°42' Ross Is. S19 Dec. 18, '84 Cape Bird 77°16'36'' 166°23' Syowa St. S22 Jan. 12, '87 Cape Bird (near rokery) 77°34' 161°04' Syowa St. S22 Jan. 12, '87 Cape Bird (near take Nurume) 69°14' 39°40' 15 Syowa St. S22 Jan. 12, '86 Canghorde (near take Nurume) 69°14' 39°41' Syowa St.								
S11 Dec. 19, '86 Crater Pond (near McMurdo St.) 77°50' 20'' 166°47' 15 S12 Dec. 29, '86 Don Juan Pond (east side) 77°34' 161°12' S13 Dec. 29, '86 Don Juan Pond (basin) 77°34' 161°12' S14 Jan. 1, '87 Taylor Valley (near terminal 77°43' 162°18' of Taylor GL.) of Taylor GL. 77°31' 161°42' S15 Jan. 9, '87 Wright Valley (near Bull Pass) 77°31' 161°42' S17 Jan. 10, '87 Lake Vanda (east side) 77°32' 166°49' S18 Jan. 10, '87 Lake Vanda (east side) 77°16' 36'' 166°23' 8 S20 Jan. 12, '87 Cape Bird 77°16' 36'' 166°23' 8 S21 Jan. 12, '87 Cape Bird (near rokery) 77°16' 36'' 166°23' 8 Syowa St. S22 Jan. 12, '86 Canguha (near Side) 77°34' 161°04' Syowa St. S22 Jan. 12, '86 Cape Bird 77°34' 161°04' A Dec. 19, '84 North Fork (SF-1 Pond) 77°34' 161°04' A Dec. 17, '84 Labyrinth (E-5 Pond) <								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
S13 Dec. 29, '86 Don Juan Pond (basin) 77°34' 161°11' S14 Jan. 1, '87 Taylor Valley (near terminal of Taylor Gl.) 77°31' 161°11' S15 Jan. 9, '87 Wright Valley (near Bull Pass) 77°31' 161°42' S15 Jan. 9, '87 Wright Valley (near Bull Pass) 77°31' 161°42' S17 Jan. 10, '87 Lake Vanda (east side) 77°23' 166°49' Ross Is. S19 Dec. 18, '84 Cape Bird 77°16'36'' 166°23' 8 S20 Jan. 12, '87 Cape Bird (near rookery) 77°16'36'' 166°23' 8 Syowa St. S22 Jan. 12, '87 Cape Bird (near rookery) 77°16'36'' 166°23' 8 Syowa St. S22 Jan. 12, '87 Cape Bird (near rookery) 77°16'36'' 166°23' 8 Syowa St. S22 Jan. 29, '86 Grauth Tork (I-2 Pond) 77°34'' 161°04' A Dec. 20, '84 Labry toth Fork (I-2 P								
S14 Jan. 1, '87 Taylor Valley (near terminal of Tq°43' 162°18' of Taylor GL) S15 Jan. 9, '87 Wright Valley (near Bull Pass) 77°31' 161°49' S15 Jan. 9, '87 Wright Valley (near Bull Lake) 77°32' 161°40' S18 Jan. 10, '87 Lake Vanda (east side) 77°32' 161°40' S18 Jan. 10, '87 Lake Vanda (east side) 77°12' 166°42' S19 Dec. 18, '84 Cape Bird 77°16' 36'' 166°23' 8 S20 Jan. 12, '87 Cape Bird 77°16' 36'' 166°23' 8 Syowa St. S22 Jan. 12, '86 Cape Bird 77°16' 36'' 166°23' 8 Syowa St. S22 Jan. 12, '86 Cape Bird 77°16' 36'' 166°23' 8 Syowa St. S22 Jan. 12, '86 Cape Bird 77°16' 36'' 160°27' 8 39°40' Algae Dry Valley A Dec. 8, '84 South Fork (SF-1 Pond) 77°32' 161°04' A Dec. 1								
S15 Jan. 9, '87 Wright Valley (near Bull Pass) 77°31' 161°49' S16 Jan. 9, '87 Wright Valley (near Bull Lake) 77°31' 161°42' S17 Jan. 10, '87 Lake Vida (west side) 77°32' 166°49' S18 Jan. 10, '87 Lake Vida (west side) 77°12' 166°49' Ross Is. S19 Dec. 18, '84 Cape Bird 77°16' 36'' 166°23' 8 S20 Jan. 12, '87 Cape Bird (near rookery) 77°16' 36'' 166°23' 8 Syowa St. S22 Jan. 12, '87 Cape Bird (near rookery) 77°34' 161°04' Syowa St. S22 Jan. 12, '86 Ongul Is. (Miharasi Peak) 69°00'25'' 39°35' S24 Jan. 22, '86 Rundvågshetta 69°54' 39°31' 161°04' Algae Dry Valley A 1 Dec. 8'84 South Fork (SF-1 Pond) 77°32' 161°04' A 2 Dec. 17, '84 Labyrinth (E-5 Pond) 77°32' 161°04' A 5 Dec'26' 39'61'						Taylor Valley (near terminal		
S 16 Jan. 9, '87 Wright Valley (near Bull Lake) 77°31' 161°42' S 17 Jan. 10, '87 Lake Vanda (east side) 77°32' 161°40' S 18 Jan. 10, '87 Lake Vanda (east side) 77°32' 166°49' Ross Is. S 19 Dec. 18, '84 Cape Bird 77°16' 36'' 166°23' 8 Syowa St. S 22 Jan. 12, '87 Cape Bird (near rookery) 77°16' 36'' 166°23' 8 Syowa St. S 22 Jan. 18, '86 Langhovde (near Lake Nurume) 69°24' 39°40' 12 S 23 Jan. 12, '86 Karsvnes (near Torinosu Cove) 69°26' 39°35' 52 S 24 Jan. 2, '86 Ongul Is. (Miharasi Peak) 69°00' 25'' 39°35' 52 Jan. 19, '84 North Fork (SF-1 Pond) 77°34' 161°04' A 2 Dec. 19, '84 North Fork (1-2 Pond) 77°32' 161°28' A 5 Dec. 2, '84 Lake Canopus 77°34'			S 15	Ian 9	'87		77°31'	161°49′
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
S 18 Jan. 10, '87 Lake Vida (west side) 77°23' 166°49' Ross Is. S 19 Dec. 18, '84 Cape Bird 77°16' 36'' 166°23' 8 S 20 Jan. 12, '87 Cape Bird 77°16' 36'' 166°23' 8 S 21 Jan. 12, '87 Cape Bird (near rookery) 77°16' 36'' 166°23' 8 Syowa St. S 22 Jan. 12, '87 Cape Bird (near rookery) 77°16' 36'' 166°23' 8 Syowa St. S 22 Jan. 12, '87 Cape Bird (near rookery) 77°16' 36'' 166°23' 8 Syowa St. S 22 Jan. 12, '87 Cape Bird (near rookery) 77°16' 36'' 166°23' 8 Algae Dry Valley A 1 Dec. 8, '84 South Fork (SF-1 Pond) 77°32' 161°04' A 2 Dec. 19, '84 North Fork (1-2 Pond) 77°32' 161°04' A 3 Dec. 17, '84 Labyrinth (E-5 Pond) 77°32' 161°04' A 4 Dec. 20, '84 Lake Canopus 77°34' 161°04' A 5 Dec. 28, '86 South Fork (near SF-1 Pond) 77°34' 161°04'								
Ross Is. S 19 Dec. 18, '84 Cape Bird 77°16' 36" 166°23' £ Subsect S 20 Jan. 12, '87 Cape Bird 77°16' 36" 166°23' £ Syowa St. S 21 Jan. 12, '87 Cape Bird (near rookery) 77°16' 36" 166°23' £ Syowa St. S 22 Jan. 18, '86 Langhovde (near Lake Nurume) 69°14' 39°40' 12 Syowa St. S 22 Jan. 12, '87 Cape Bird (near roninosu Cove) 69°28' 39°35' S 24 Jan. 22, '86 Ongul Is. (Miharasi Peak) 69°00' 25" 39°36' 50 S 25 Jan. 25, '86 Rundvågshetta 69°00' 25" 39°36' 50 Algae Dry Valley A 1 Dec. 8, '84 South Fork (SF-1 Pond) 77°34' 161°04' A 2 Dec. 19, '84 Lake Vanda (west side) 77°32' 161°28' A A 5 Dec. 20, '84 Lake Canopus 77°34' 161°04' A 5 Dec. 28, '86 South Fork (near SF-1 Pond) 77°34' 161°04' A 6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ross Is						
Syowa St. S21 Jan. 12, '87 Cape Bird (near rookery) 77°16'36'' 166°23' § Syowa St. S22 Jan. 18, '86 Langhovde (near Lake Nurume) 69°14' 39°40' 12 S23 Jan. 19, '86 Skarvsnes (near Torinosu Cove) 69°28' 39°35' S23 Jan. 22, '86 Ongul Is. (Miharasi Peak) 69°00' 25'' 39°36' 50 Algae Dry Valley A 1 Dec. 8, '84 South Fork (SF-1 Pond) 77°34' 161°04' A 2 Dec. 19, '84 North Fork (I-2 Pond) 77°32' 161°04' A 3 Dec. 17, '84 Labyrinth (E-5 Pond) 77°32' 161°04' A 5 Dec. 26, '84 Lake Canopus 77°34' 161°04' A 6 Dec. 18' 16' South Fork (near SF-1 Pond) 77°34' 161°04' A 6 Dec. 28, '86 South Fork (near SF-1 Pond) 77°34' 161°04' A 9 Dec. 28, '86 South Fork (near SF-1 Pond) 77°33'		10000 10.						
Syowa St. S 22 Jan. 18, '86 Langhovde (near Lake Nurume) 69°14' 39°40' 12 S 23 Jan. 19, '86 Skarvsnes (near Torinosu Cove) 69°28' 39°35' 39°35' 39°36' 50 S 24 Jan. 22, '86 Ongul Is. (Miharasi Peak) 69°00' 25'' 39°36' 50 Algae Dry Valley A 1 Dec. 8, '84 South Fork (SF-1 Pond) 77°34' 161°04' A 2 Dec. 19, '84 North Fork (1-2 Pond) 77°32' 161°06' A A 3 Dec. 17, '84 Labyrinth (E-5 Pond) 77°32' 161°04' A 5 Dec. 20, '84 Lake Vanda (west side) 77°32' 161°04' A 5 Dec. 28, '86 South Fork (near SF-1 Pond) 77°33' 161°28' A 6 Dec. 11, '85 Lake Canopus 77°33' 161°31' A 8 Dec. 28, '86 South Fork (near SF-1 Pond) 77°33' 161°31' A 8 Dec. 28, '86 South Fork (east side of SF-1 77°34' 161°04' A 9 Dec. 28, '86 South Fork (east side of SF-1 <								
S 23 Jan. 19, '86 Skarvsnes (near Torinosu Cove) 69°28' 39°35' S 24 Jan. 22, '86 Ongul Is. (Miharasi Peak) 69°00' 25'' 39°36' 5(Algae Dry Valley A 1 Dec. 8, '84 South Fork (SF-1 Pond) 77°34' 161°04' A 2 Dec. 19, '84 North Fork (1-2 Pond) 77°32' 161°04' A 2 Dec. 19, '84 North Fork (1-2 Pond) 77°32' 161°04' A 3 Dec. 17, '84 Labyrinth (E-5 Pond) 77°32' 161°04' A 5 Dec. 20, '84 Lake Vanda (west side) 77°32' 161°04' A 5 Dec. 26, '84 Lake Canopus 77°34' 161°04' A 6 Dec. 11, '85 Lake Canopus 77°34' 161°04' A 6 Dec. 28, '86 South Fork (near SF-1 Pond) 77°34' 161°04' A 8 Dec. 28, '86 South Fork (near SF-1 Pond) 77°33' 161°04' A 9 Dec. 28, '86 South Fork (near shore line) 77°33' 161°31' A 10 Jan. 7, '87 Lak		Svowa St						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		bjena bu						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
A2Dec. 19, '84North Fork (1-2 Pond) $77^{\circ}32'$ $161^{\circ}06'$ A3Dec. 17, '84Labyrinth (E-5 Pond) $77^{\circ}32'$ $160^{\circ}50'$ A4Dec. 20, '84Lake Vanda (west side) $77^{\circ}32'$ $161^{\circ}28'$ A5Dec. 26, '84Lake Canopus $77^{\circ}34'$ $161^{\circ}04'$ A6Dec. 11, '85Lake Fryxell $77^{\circ}36'$ $163^{\circ}06'$ A7Jan. 5, '86Lake Canopus $77^{\circ}33'$ $161^{\circ}01'$ A8Dec. 28, '86South Fork (near SF-1 Pond) $77^{\circ}34'$ $161^{\circ}04'$ A9Dec. 28, '86South Fork (east side of SF-1 $77^{\circ}34'$ $161^{\circ}04'$ A9Dec. 28, '86South Fork (east side of SF-1 $77^{\circ}34'$ $161^{\circ}04'$ A9Dec. 28, '86South Fork (east side of SF-1 $77^{\circ}34'$ $161^{\circ}04'$ A9Dec. 28, '86South Fork (east side of SF-1 $77^{\circ}34'$ $161^{\circ}04'$ A9Dec. 28, '86South Fork (east side of SF-1 $77^{\circ}34'$ $161^{\circ}04'$ A9Dec. 28, '86South Fork (east side of SF-1 $77^{\circ}34'$ $161^{\circ}04'$ A9Dec. 28, '86South Fork (east side of SF-1 $77^{\circ}33'$ $161^{\circ}04'$ A9Dec. 28, '86South Fork (east side of SF-1 $77^{\circ}33'$ $161^{\circ}04'$ A9Dec. 28, '86South Fork (east side of SF-1 $77^{\circ}33'$ $161^{\circ}23'$ LichenDry ValleyL <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
A 3Dec. 17, '84Labyrinth (E-5 Pond) $77^{\circ}32'$ $160^{\circ}50'$ A 4Dec. 20, '84Lake Vanda (west side) $77^{\circ}32'$ $161^{\circ}28'$ A 5Dec. 26, '84Lake Canopus $77^{\circ}34'$ $161^{\circ}04'$ A 6Dec. 11, '85Lake Fryxell $77^{\circ}36'$ $163^{\circ}06'$ A 7Jan. 5, '86Lake Canopus $77^{\circ}33'$ $161^{\circ}04'$ A 8Dec. 28, '86South Fork (near SF-1 Pond) $77^{\circ}34'$ $161^{\circ}04'$ A 9Dec. 28, '86South Fork (east side of SF-1 $77^{\circ}34'$ $161^{\circ}04'$ A 9Dec. 28, '86South Fork (east side of SF-1 $77^{\circ}34'$ $161^{\circ}04'$ A 9Dec. 28, '86South Fork (east side of SF-1 $77^{\circ}34'$ $161^{\circ}04'$ A 9Dec. 28, '86South Fork (east side of SF-1 $77^{\circ}34'$ $161^{\circ}04'$ A 9Dec. 28, '86South Fork (east side of SF-1 $77^{\circ}33'$ $161^{\circ}31'$ A10Jan. 7, '87Lake Canopus (in the water) $77^{\circ}33'$ $161^{\circ}31'$ A11Jan. 7, '87Lake Canopus (near shore line) $77^{\circ}36'$ $163^{\circ}06'$ Koss Is.L 2Jan. 12, '87Cape Bird (near hut) $77^{\circ}16'$ $36''$ $166^{\circ}23'$ Syowa St.L 3Jan. 19, '86Skarvsnes (near Torinosu Cove) $69^{\circ}28'$ $39^{\circ}35'$ Excreta of Ross Is.M 1Jan. 5, '86Ross Sea (near McMurdo St.) $77^{\circ}51'$ $166^{\circ}40'$ MawsoniiM 2Jan. 14, '87Ross Sea (near McMurdo St.) $77^{\circ}51'$ 1	Algae	Dry Valley						
A 4Dec. 20, '84Lake Vanda (west side) $77^{\circ}32'$ $161^{\circ}28'$ A 5Dec. 26, '84Lake Canopus $77^{\circ}34'$ $161^{\circ}04'$ A 6Dec. 11, '85Lake Fryxell $77^{\circ}36'$ $163^{\circ}06'$ A 7Jan. 5, '86Lake Fryxell $77^{\circ}33'$ $161^{\circ}31'$ A 8Dec. 28, '86South Fork (near SF-1 Pond) $77^{\circ}34'$ $161^{\circ}04'$ A 9Dec. 28, '86South Fork (east side of SF-1 $77^{\circ}34'$ $161^{\circ}04'$ A 9Dec. 28, '86South Fork (east side of SF-1 $77^{\circ}34'$ $161^{\circ}04'$ A 10Jan. 7, '87Lake Canopus (in the water) $77^{\circ}33'$ $161^{\circ}31'$ A 11Jan. 7, '87Lake Canopus (near shore line) $77^{\circ}33'$ $161^{\circ}31'$ LichenDry ValleyL 1Nov. 26, '84Lake Fryxell $77^{\circ}36'$ $163^{\circ}06'$ Ross Is.L 2Jan. 12, '87Cape Bird (near hut) $77^{\circ}16'36''$ $166^{\circ}23'$ Syowa St.L 3Jan. 19, '86Skarvsnes (near Torinosu Cove) $69^{\circ}28'$ $39^{\circ}35'$ Excreta of Ross Is.P 1Jan. 12, '87Cape Bird (at penguin rookery) $77^{\circ}16'36''$ $166^{\circ}23'$ Viscera of Ross Is.M 1Jan. 5, '86Ross Sea (near McMurdo St.) $77^{\circ}51'$ $166^{\circ}40'$ MawsoniiM 2Jan. 14, '87Ross Sea (near McMurdo St.) $77^{\circ}51'$ $166^{\circ}40'$								
A 5 Dec. 26, '84 Lake Canopus 77°34' 161°04' A 6 Dec. 11, '85 Lake Fryxell 77°36' 163°06' A 7 Jan. 5, '86 Lake Canopus 77°33' 161°31' A 8 Dec. 28, '86 South Fork (near SF-1 Pond) 77°34' 161°04' A 9 Dec. 28, '86 South Fork (near SF-1 Pond) 77°34' 161°04' A 9 Dec. 28, '86 South Fork (east side of SF-1 77°34' 161°04' A 9 Dec. 28, '86 South Fork (east side of SF-1 77°33' 161°04' A 9 Dec. 28, '86 South Fork (east side of SF-1 77°33' 161°04' A 9 Dec. 28, '86 South Fork (east side of SF-1 77°33' 161°04' A 10 Jan. 7, '87 Lake Canopus (in the water) 77°33' 161°31' A 11 Jan. 7, '87 Lake Canopus (near shore line) 77°33' 161°31' Lichen Dry Valley L 1 Nov. 26, '84 Lake Fryxell 77°36' 163°06' Ross Is. L 2 Jan. 12, '87 Cape Bird (near hut) 77°16'36'' 166°23' 39°35' Excreta of Ross Is. P 1 Jan. 12, '87 Cape Bird (at penguin rookery) 77°16'36'' 166°23' Viscera of Ross Is. M 1 Jan. 5, '86 Ross Sea (near McMurdo St.) 77°51' 166°40' Mawsonii <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
A 6 Dec. 11, '85 Lake Fryxell 77°36' 163°06' A 7 Jan. 5, '86 Lake Canopus 77°33' 161°31' A 8 Dec. 28, '86 South Fork (near SF-1 Pond) 77°34' 161°04' A 9 Dec. 28, '86 South Fork (east side of SF-1 77°33' 161°04' A 9 Dec. 28, '86 South Fork (east side of SF-1 77°34' 161°04' A 9 Dec. 28, '86 South Fork (east side of SF-1 77°33' 161°04' A 10 Jan. 7, '87 Lake Canopus (in the water) 77°33' 161°31' A 11 Jan. 7, '87 Lake Canopus (near shore line) 77°33' 161°31' Lichen Dry Valley L 1 Nov. 26, '84 Lake Fryxell 77°36' 163°06' Ross Is. L 2 Jan. 12, '87 Cape Bird (near hut) 77°16'36'' 166°23' 39°35' Excreta of Ross Is. P 1 Jan. 12, '87 Cape Bird (at penguin rookery) 77°16'36'' 166°23' Viscera of Ross Is. M 1 Jan. 5, '86 Ross Sea (near McMurdo St.) 77°51' 166°40' Mawsonii M 2 Jan. 14, '87 Ross Sea (near McMurdo St.) 77°51' 166°40'								
A 7 Jan. 5, '86 Lake Canopus 77°33' 161°31' A 8 Dec. 28, '86 South Fork (near SF-1 Pond) 77°34' 161°04' A 9 Dec. 28, '86 South Fork (east side of SF-1 77°34' 161°04' A 9 Dec. 28, '86 South Fork (east side of SF-1 77°34' 161°04' Pond) A10 Jan. 7, '87 Lake Canopus (in the water) 77°33' 161°04' A 10 Jan. 7, '87 Lake Canopus (in the water) 77°33' 161°31' A11 Jan. 7, '87 Lake Canopus (near shore line) 77°33' 161°31' Lichen Dry Valley L 1 Nov. 26, '84 Lake Fryxell 77°36' 163°06' Ross Is. L 2 Jan. 12, '87 Cape Bird (near hut) 77°16' 36'' 166°23' 39°35' Syowa St. L 3 Jan. 19, '86 Skarvsnes (near Lake Hunazoko) 69°25' 39°35' 164°23' Excreta of Ross Is. P 1 Jan. 12, '87 Cape Bird (at penguin rookery) 77°16' 36'' 166°23' Viscera of Ross Is. M 1 Jan. 5, '86 Ross Sea (near McMurdo St.) 77°51' 166°40' Mawsonii M 2 Jan. 14, '87 Ross Sea (near McMurdo St.) 77°51' 166°40'								
A 8Dec. 28, '86South Fork (near SF-1 Pond) $77^{\circ}34'$ $161^{\circ}04'$ A 9Dec. 28, '86South Fork (east side of SF-1 $77^{\circ}34'$ $161^{\circ}04'$ Pond)A10Jan. 7, '87Lake Canopus (in the water) $77^{\circ}33'$ $161^{\circ}31'$ A11Jan. 7, '87Lake Canopus (in the water) $77^{\circ}33'$ $161^{\circ}31'$ LichenDry ValleyL 1Nov. 26, '84Lake Fryxell $77^{\circ}36'$ $163^{\circ}06'$ Ross Is.L 2Jan. 12, '87Cape Bird (near hut) $77^{\circ}16' 36''$ $166^{\circ}23'$ Syowa St.L 3Jan. 19, '86Skarvsnes (near Lake Hunazoko) $69^{\circ}25'$ $39^{\circ}35'$ Excreta of Ross Is.P 1Jan. 12, '87Cape Bird (at penguin rookery) $77^{\circ}16' 36''$ $166^{\circ}23'$ Viscera of Ross Is.M 1Jan. 5, '86Ross Sea (near McMurdo St.) $77^{\circ}51'$ $166^{\circ}40'$ MawsoniiM 2Jan. 14, '87Ross Sea (near McMurdo St.) $77^{\circ}51'$ $166^{\circ}40'$								
A 9Dec. 28, '86South Fork (east side of SF-1 Pond) $77^{\circ}34'$ $161^{\circ}04'$ $161^{\circ}31'$ A 10Jan. 7, '87Lake Canopus (in the water) A 11 $77^{\circ}33'$ $161^{\circ}31'$ $161^{\circ}31'$ LichenDry ValleyL 1Nov. 26, '84Lake Fryxell $77^{\circ}36'$ $163^{\circ}06'$ $166^{\circ}23'$ LichenDry ValleyL 1Nov. 26, '84Lake Fryxell $77^{\circ}36'$ $163^{\circ}06'$ $166^{\circ}23'$ Syowa St.L 2Jan. 12, '87Cape Bird (near hut) $77^{\circ}16'36''$ $166^{\circ}23'$ $39^{\circ}35'$ Excreta of Ross Is.P 1Jan. 12, '87Cape Bird (at penguin rookery) $77^{\circ}16'36''$ $166^{\circ}23'$ $39^{\circ}35'$ Viscera of Ross Is.M 1Jan. 5, '86Ross Sea (near McMurdo St.) $77^{\circ}51'$ $166^{\circ}40'$ $M 2MawsoniiM 2Jan. 14, '87Ross Sea (near McMurdo St.)77^{\circ}51'166^{\circ}40'$								
A10 Jan. 7, '87 Lake Canopus (in the water) 77°33' 161°31' A11 Jan. 7, '87 Lake Canopus (near shore line) 77°33' 161°31' Lichen Dry Valley L 1 Nov. 26, '84 Lake Fryxell 77°36' 163°06' Ross Is. L 2 Jan. 12, '87 Cape Bird (near hut) 77°16'36'' 166°23' Syowa St. L 3 Jan. 19, '86 Skarvsnes (near Lake Hunazoko) 69°25' 39°35' Excreta of Ross Is. P 1 Jan. 12, '87 Cape Bird (at penguin rookery) 77°16' 36'' 166°23' Viscera of Ross Is. M 1 Jan. 5, '86 Ross Sea (near McMurdo St.) 77°51' 166°40' Mawsonii M 1 Jan. 14, '87 Ross Sea (near McMurdo St.) 77°51' 166°40'						South Fork (east side of SF-1		
A11 Jan. 7, '87 Lake Canopus (near shore line) 77°33' 161°31' Lichen Dry Valley L 1 Nov. 26, '84 Lake Fryxell 77°36' 163°06' Ross Is. L 2 Jan. 12, '87 Cape Bird (near hut) 77°16' 36'' 166°23' Syowa St. L 3 Jan. 19, '86 Skarvsnes (near Lake Hunazoko) 69°25' 39°35' Excreta of Ross Is. P 1 Jan. 12, '87 Cape Bird (at penguin rookery) 77°16' 36'' 166°23' Viscera of Ross Is. M 1 Jan. 5, '86 Ross Sea (near McMurdo St.) 77°51' 166°40' Mawsonii M 1 Jan. 14, '87 Ross Sea (near McMurdo St.) 77°51' 166°40'			A 10	Jan	7. '87	,	77°33′	161°31′
Ross Is. L 2 Jan. 12, '87 Cape Bird (near hut) 77°16' 36'' 166°23' 39°35' Syowa St. L 3 Jan. 19, '86 Skarvsnes (near Lake Hunazoko) 69°25' 39°35' L 4 Jan. 19, '86 Skarvsnes (near Torinosu Cove) 69°28' 39°35' Excreta of Ross Is. P 1 Jan. 12, '87 Cape Bird (at penguin rookery) 77°16' 36'' 166°23' Viscera of Ross Is. M 1 Jan. 5, '86 Ross Sea (near McMurdo St.) 77°51' 166°40' Mawsonii M 2 Jan. 14, '87 Ross Sea (near McMurdo St.) 77°51' 166°40'								
Ross Is. L 2 Jan. 12, '87 Cape Bird (near hut) 77°16' 36'' 166°23' 39°35' Syowa St. L 3 Jan. 19, '86 Skarvsnes (near Lake Hunazoko) 69°25' 39°35' L 4 Jan. 19, '86 Skarvsnes (near Torinosu Cove) 69°28' 39°35' Excreta of Ross Is. P 1 Jan. 12, '87 Cape Bird (at penguin rookery) 77°16' 36'' 166°23' Viscera of Ross Is. M 1 Jan. 5, '86 Ross Sea (near McMurdo St.) 77°51' 166°40' Mawsonii M 2 Jan. 14, '87 Ross Sea (near McMurdo St.) 77°51' 166°40'	Lichen	Dry Valle	y L 1	Nov. 2	6, '84	Lake Fryxell	77°36′	163°06′
Syowa St. L 3 Jan. 19, '86 Skarvsnes (near Lake Hunazoko) 69°25' 39°35' L 4 Jan. 19, '86 Skarvsnes (near Torinosu Cove) 69°28' 39°35' Excreta of Ross Is. P 1 Jan. 12, '87 Cape Bird (at penguin rookery) 77°16' 36" 166°23' Viscera of Ross Is. M 1 Jan. 5, '86 Ross Sea (near McMurdo St.) 77°51' 166°40' Mawsonii M 2 Jan. 14, '87 Ross Sea (near McMurdo St.) 77°51' 166°40'		•						
L4Jan.19, '86Skarvsnes (near Torinosu Cove)69°28'39°35'Excreta of Ross Is. PenguinP1Jan.12, '87Cape Bird (at penguin rookery)77°16' 36"166°23'Viscera of Ross Is. MawsoniiM1Jan.5, '86Ross Sea (near McMurdo St.)77°51'166°40'MawsoniiM2Jan.14, '87Ross Sea (near McMurdo St.)77°51'166°40'		Syowa St.						
Excreta of Ross Is. PenguinP 1Jan. 12, '87Cape Bird (at penguin rookery)77°16' 36"166°23'Viscera of Ross Is. MawsoniiM 1Jan. 5, '86Ross Sea (near McMurdo St.)77°51'166°40'MawsoniiM 2Jan. 14, '87Ross Sea (near McMurdo St.)77°51'166°40'								39°35′
Mawsonii M 2 Jan. 14, '87 Ross Sea (near McMurdo St.) 77°51' 166°40'		f Ross Is.						
Mawsonii M 2 Jan. 14, '87 Ross Sea (near McMurdo St.) 77°51' 166°40'	Viscera of	f Ross Is	M 1	Jan	5. '86	Ross Sea (near McMurdo St)	77°51′	166°40′
	Krill	•	K 1		-		61°	56°

Table 1. Sampling in McMurdo Sound area and around Syowa Station in the Antarctic.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.0003 \pm 0.0002 \\ \\ 0.0007 \pm 0.0003 \\ 0.0016 \pm 0.0004 \\ \text{ND} \\ OUBLICATION OF STATES OF STA$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c}\\ 0.0007 \pm 0.0003\\ 0.0016 \pm 0.0004\\ ND\\ ND\\ ND\\ ND\\ ND\\ ND\\ ND\\ ND\\ ND\\ 0.016 \pm 0.007\\ 0.006 \pm 0.004\\ ND\\ ND\\ ND\\ ND\\ ND\\ ND\\ ND\\ ND\\ ND\\ ND$
W 4- 0.08 ± 0.02 0.0059 ± 0.0008 W 5 3.6 ± 0.2 0.2 ± 0.1 0.022 ± 0.004 S 1 0.34 ± 0.08 0.22 ± 0.06 0.006 ± 0.005 S 2 0.10 ± 0.06 1.4 ± 0.1 0.018 ± 0.006 S 3 0.18 ± 0.06 1.2 ± 0.1 0.013 ± 0.006 S 4NDNDNDS 5NDNDNDS 6 0.20 ± 0.07 1.4 ± 0.6 0.028 ± 0.007 S 7 0.06 ± 0.05 0.07 ± 0.04 NDS 8 0.18 ± 0.05 ND 0.003 ± 0.003 S 9 3.7 ± 0.1 6.3 ± 0.5 0.18 ± 0.02 S 10 0.56 ± 0.07 1.4 ± 0.4 0.03 ± 0.01 S 11 0.14 ± 0.06 NDNDS 12 0.17 ± 0.05 NDNDS 13NDNDNDS 14 0.52 ± 0.06 NDNDS 15 0.14 ± 0.05 NDNDS 16 1.9 ± 0.1 4.4 ± 0.8 0.16 ± 0.02 S 17 0.32 ± 0.06 1.2 ± 0.3 0.013 ± 0.003 S 18 0.48 ± 0.08 1.3 ± 0.4 0.015 ± 0.006 S 19 0.7 ± 0.1 0.26 ± 0.06 NDS 20 0.35 ± 0.07 1.6 ± 0.6 0.016 ± 0.006 S 21 2.1 ± 0.2 2.2 ± 0.7 0.07 ± 0.01 S 22 0.36 ± 0.07 9.3 ± 0.4 0.17 ± 0.02 S 23 0.44 ± 0.07 1.1 ± 0.5 0.030 ± 0.007 S 24 0.41 ± 0.07 19.6 ± 0.7 0.41 ± 0.03 S 25 0.09 ± 0.05 NDND	0.0016±0.0004 ND ND ND ND ND ND ND ND ND 0.016 ±0.007 0.006 ±0.004 ND ND ND ND ND ND ND ND ND ND ND ND ND
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.0016±0.0004 ND ND ND ND ND ND ND ND ND 0.016 ±0.007 0.006 ±0.004 ND ND ND ND ND ND ND ND ND ND ND ND ND
W 5 3.6 ± 0.2 0.2 ± 0.1 0.022 ± 0.004 S 1 0.34 ± 0.08 0.22 ± 0.06 0.006 ± 0.005 S 2 0.10 ± 0.06 1.4 ± 0.1 0.018 ± 0.006 S 3 0.18 ± 0.06 1.2 ± 0.1 0.013 ± 0.006 S 4NDNDNDS 5NDNDNDS 6 0.20 ± 0.07 1.4 ± 0.6 0.028 ± 0.007 S 7 0.06 ± 0.05 0.07 ± 0.04 NDS 8 0.18 ± 0.05 ND 0.003 ± 0.003 S 9 3.7 ± 0.1 6.3 ± 0.5 0.18 ± 0.02 S 10 0.56 ± 0.07 1.4 ± 0.4 0.03 ± 0.01 S 11 0.14 ± 0.06 NDNDS 12 0.17 ± 0.05 NDNDS 13NDND 0.003 ± 0.003 S 14 0.52 ± 0.06 NDNDS 15 0.14 ± 0.05 ND 0.003 ± 0.003 S 16 1.9 ± 0.1 4.4 ± 0.8 0.16 ± 0.02 S 17 0.32 ± 0.06 1.2 ± 0.3 0.013 ± 0.006 S 18 0.48 ± 0.08 1.3 ± 0.4 0.015 ± 0.006 S 19 0.7 ± 0.1 0.26 ± 0.06 NDS 20 0.35 ± 0.07 1.6 ± 0.6 0.016 ± 0.006 S 21 2.1 ± 0.2 2.2 ± 0.7 0.07 ± 0.01 S 22 0.36 ± 0.07 9.3 ± 0.4 0.17 ± 0.02 S 23 0.44 ± 0.07 1.1 ± 0.5 0.030 ± 0.007 S 24 0.41 ± 0.07 19.6 ± 0.7 0.41 ± 0.03 S 25 0.09 ± 0.05 NDND <td>ND ND ND ND ND ND ND 0.016 ±0.007 0.006 ±0.004 ND ND ND ND ND ND ND ND ND ND</td>	ND ND ND ND ND ND ND 0.016 ±0.007 0.006 ±0.004 ND ND ND ND ND ND ND ND ND ND
S20.10 ± 0.06 1.4 ± 0.1 0.018 ± 0.006 S30.18 ± 0.06 1.2 ± 0.1 0.013 ± 0.006 S4NDNDNDNDS5NDNDNDNDS60.20 ± 0.07 1.4 ± 0.6 0.028 ± 0.007 S70.06 ± 0.05 ND0.003 ± 0.003 S80.18 ± 0.05 ND0.003 ± 0.003 S93.7 ± 0.1 6.3 ± 0.5 0.18 ± 0.02 S100.56 ± 0.07 1.4 ± 0.4 0.03 ± 0.01 S110.14 ± 0.06 NDNDS120.17 ± 0.05 NDNDS13NDND0.007 ± 0.004 S140.52 ± 0.06 NDNDS150.14 ± 0.05 NDNDS161.9 ± 0.1 4.4 ± 0.03 S161.9 ± 0.1 4.4 ± 0.3 S161.9 ± 0.1 0.26 ± 0.06 NDS18 0.48 ± 0.08 1.3 ± 0.4 O0.35 ± 0.07 1.6 ± 0.6 NDS20 0.35 ± 0.07 1.6 ± 0.6 S19 0.7 ± 0.1 0.26 ± 0.06 NDS20 0.35 ± 0.07	$\begin{array}{c} & \text{ND} \\ & \text{OUD} \\ & \text{ND} \\ $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & \text{ND} \\ & \text{OUD} \\ & \text{ND} \\ $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & \text{ND} \\ & \text{OUD} \\ & 0.016 \ \pm 0.007 \\ & 0.006 \ \pm 0.007 \\ & \text{ND} $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & \text{ND} \\ & \text{ND} \\ & \text{ND} \\ & \text{ND} \\ & \text{OUD} \\ 0.016 \ \pm 0.007 \\ 0.006 \ \pm 0.007 \\ & \text{ND} \\ & $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & \text{ND} \\ & \text{ND} \\ & \text{ND} \\ & \text{OD} \\ 0.016 \ \pm 0.007 \\ 0.006 \ \pm 0.004 \\ & \text{ND} \\ & \text$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & \text{ND} \\ & \text{ND} \\ & \text{OOI6} \ \pm 0.007 \\ & 0.006 \ \pm 0.004 \\ & \text{ND} \\ & \text{OOI3} \ \pm 0.009 \\ & \text{ND} \\ & N$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & \text{ND} \\ 0.016 \ \pm 0.007 \\ 0.006 \ \pm 0.004 \\ & \text{ND} \\ 0.033 \ \pm 0.009 \\ & \text{ND} \\ & N$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.016 \ \pm 0.007 \\ 0.006 \ \pm 0.004 \\ \text{ND} \\ \text{ND} \\ \text{ND} \\ \text{ND} \\ 0.033 \ \pm 0.009 \\ \text{ND} \\ \text$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.006 \ \pm 0.004 \\ \text{ND} \\ \text{ND} \\ \text{ND} \\ \text{ND} \\ 0.033 \ \pm 0.009 \\ \text{ND} \\ N$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ND ND ND 0.033 ±0.009 ND ND ND ND ND ND 0.013 ±0.005
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ND ND ND 0.033 ±0.009 ND ND ND ND ND 0.013 ±0.005
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ND ND 0.033 ±0.009 ND ND ND ND ND 0.013 ±0.005
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ND ND 0.033 ±0.009 ND ND ND ND 0.013 ±0.005
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ND 0.033 ±0.009 ND ND ND ND 0.013 ±0.005
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.033 ±0.009 ND ND ND ND 0.013 ±0.005
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ND ND ND 0.013 ±0.005
S 18 0.48 ± 0.08 1.3 ± 0.4 0.015 ± 0.006 S 19 0.7 ± 0.1 0.26 ± 0.06 NDS 20 0.35 ± 0.07 1.6 ± 0.6 0.016 ± 0.006 S 21 2.1 ± 0.2 2.2 ± 0.7 0.07 ± 0.01 S 22 0.36 ± 0.07 9.3 ± 0.4 0.17 ± 0.02 S 23 0.44 ± 0.07 1.1 ± 0.5 0.030 ± 0.007 S 24 0.41 ± 0.07 19.6 ± 0.7 0.41 ± 0.03 S 25 0.09 ± 0.05 NDND	ND ND ND 0.013 ±0.005
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ND ND 0.013 ±0.005
S 20 0.35 ± 0.07 1.6 ± 0.6 0.016 ± 0.006 S 21 2.1 ± 0.2 2.2 ± 0.7 0.07 ± 0.01 S 22 0.36 ± 0.07 9.3 ± 0.4 0.17 ± 0.02 S 23 0.44 ± 0.07 1.1 ± 0.5 0.030 ± 0.007 S 24 0.41 ± 0.07 19.6 ± 0.7 0.41 ± 0.03 S 25 0.09 ± 0.05 NDND	ND 0.013 ±0.005
S 212.1 ± 0.2 2.2 ± 0.7 0.07 ± 0.01 S 220.36 ± 0.07 9.3 ± 0.4 0.17 ± 0.02 S 230.44 ± 0.07 1.1 ± 0.5 0.030 ± 0.007 S 240.41 ± 0.07 19.6 ± 0.7 0.41 ± 0.03 S 250.09 ± 0.05 NDND	0.013 ± 0.005
S 22 0.36 ± 0.07 9.3 ± 0.4 0.17 ± 0.02 S 23 0.44 ± 0.07 1.1 ± 0.5 0.030 ± 0.007 S 24 0.41 ± 0.07 19.6 ± 0.7 0.41 ± 0.03 S 25 0.09 ± 0.05 NDND	
S 23 0.44 ± 0.07 1.1 ± 0.5 0.030 ± 0.007 S 24 0.41 ± 0.07 19.6 ± 0.7 0.41 ± 0.03 S 25 0.09 ± 0.05 NDND	0.030 ± 0.008
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.010 ± 0.004
S25 0.09 ±0.05 ND ND	0.09 ± 0.01
	ND
A 1 1.4 ± 0.2 - 0.09 ± 0.02	0.01 ± 0.01
A 2 1.1 ± 0.1 - 0.23 ± 0.03	0.03 ± 0.01
A 3 0.4 ± 0.2 6.7 ± 0.7 0.14 ± 0.02	0.03 ± 0.01
A 4 0.4 ± 0.3 0.009 ± 0.005	ND
A 5 1.3 ± 0.2 24 ± 1 0.52 ± 0.05	0.11 ± 0.02
A 6 4.4 ± 0.2 14.4 ± 0.6 0.31 ± 0.03	0.07 ± 0.01
A 7 1.0 ± 0.1 21.5 ± 0.7 0.48 ± 0.03	0.13 ± 0.02
A 8 1.8 ± 0.2 5.9 ± 0.6 0.15 ± 0.02	0.041 ± 0.009
A 9 1.5 ± 0.2 4.8 ± 0.6 0.13 ± 0.01	0.023 ± 0.006
A 10 0.5 ± 0.2 23.3 ± 0.6 0.48 ± 0.03	0.08 ± 0.01
A11 1.0 ± 0.2 24.1 ± 0.7 0.48 ± 0.04	0.11 ± 0.01
L 1 5.6 ± 0.3 12.6 ± 0.6 0.21 ± 0.03	0.03 ± 0.01
L 2 2.1 ± 0.3 5.9 ± 0.4 0.10 ± 0.02	ND
L 3 3.4 ± 0.2 27.4 ± 0.8 0.63 ± 0.04	ND
L 4 7.4 ± 0.3 35.2 ± 0.7 0.93 ± 0.06	0.14 ± 0.02
P 1 5.9 ± 0.3 4.4 ± 0.5 0.21 ± 0.02	0.036 ± 0.009
M 1 0.07±0.02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ND
<u> </u>	ND

Table 2. Environmental radioactivity in McMurdo Sound area and around Syowa Station in the Antarctic.

Unit: soil (Bq/kg-dry), algae, lichen (Bq/kg-dry), water (Bq/1000 l), excreta, viscera (Bq/kg-fresh). ND: not detected. —: not determined. which was nearly undetectable in Japan, was detected in water, soil, algae and lichen in Antarctica and it might have been originated by accidental burn-up of SNAP-9A satellite over the Indean Ocean in 1964.

Concentrations of artificial radionuclides were similar in excreta of a penguin to those in soil, and several times higher in algae and lichen than those in soil. Propensity of lichen and algae for collecting nutrients from air and precipitation suggests that they will be available as the indicator sample for monitoring artificial radionuclide in the Antarctic.

Acknowledgments

The authors wish to extend their sincere thanks to National Institute of Polar Research in Japan and to New Zealand Antarctic Research Programme, DSIR of New Zealand for giving every facility for the present research, and to Prof. A. DEVRIES of Illinois University who kindly offered vescira of *Dissosticus mawsonii* and to Nippon Suisan Co., Ltd. which offered krill, and to Dr. Y. YOSHIDA, Dr. K. KAMINUMA, Mr. H. MURAYAMA, Dr. H. WADA and Mr. MIURA for helpful guidance and assistance in collecting the environmental samples.

References

- AOYAMA, M., HIROSE, K., MIDORIKAWA, T. and SUGIMURA, Y. (1986): Nihon shuyô kasen-sui-chû no jinkô hôshasei kakushu no ganryô ni tsuite. Dai-28-kai Kankyo Hôshanô Kenkyû Seika Ronbun Shôroku-shû (Proc. 28th Meet. Environ. Radioact. Surv. Jpn.). Tokyo, Science and Technology Agency, Japan, 55.
- CIGNA, A. A. and CIGNA ROSSI, L. (1987): Environmental study of fallout plutonium in soils from the Piemonte Region (Northwest Italy). J. Environ. Radioact., 5, 71.
- LOONEY, J. H. H., WEBBER, C. E., NIEBOER, E., STETSKO, P. I. and KERSHAW, K. A. (1986): Interrelationships between concentration of ¹³⁷Cs and various stable elements in three Lichen species. Health Phys., **50**, 148.
- NAGAYA, Y. and NAKAMURA, K. (1984): Pu-239, 240, Cs-137 and Sr-90 in the Central North Pacific. Nippon Kaiyo Gakkaishi (J. Oceanogr. Soc. Jpn.), 40, 416–424.
- N. I. R. S. (National Institute of Radiological Sciences) (1985a): Radioactivity Survey Data in Japan, No. 72.
- N. I. R. S (National Institute of Radiological Sciences) (1985b): Radioactivity Survey Data in Japan, No. 74.
- ОКUBO, K., ТАВАТА, К., МІNAMISAKO, Y., SUZUKI, H. et al. (1986): Nihon kinkai kaisanseibutsu no hôshanô chôsa. Dai-28-kai Kankyo Hôshanô Kenkyû Seika Ronbun Shôroku-shû (Proc. 28th Meet. Environ. Radioact. Surv. Jpn.). Tokyo, Science and Technology Agency, Japan, 78.
- SHIBAYAMA, N., ISHII, M., SUZUKI, K., NOGUCHI, K. and TOMII, K. (1986): Nihon kinkai no kaisui oyobi kaiteido no hôshanô chôsa. Dai-28-kai Kankyô Hôshanô Kenkyû Seika Ronbun Shôroku-shû (Proc. 28th Meet. Environ. Radioact. Surv. Jpn.). Tokyo, Science and Technology Agency, Japan, 90.

(Received March 4, 1988; Revised manuscript received July 4, 1988)

168