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Abstract: An axisymmetric finite element computer program was developed to calculate 

heat transfer in cylindrical (r-z) geometry. The technique is applicable to steady-state and 

time-dependent problems and can handle convective, temperature-prescribed and heat­

flux-prescribed boundary conditions. It employs the heat capacity method through the 

Dirac delta function to represent latent heat effect during freezing or thawing and 

computes movement of the phase front. A number of tests with different materials and 

boundary conditions were conducted to validate this code against heat transfer situations 

with and without phase change. The results showed good agreement with exact analytical 

and numerical solutions. 

The model was then applied to determine temperature profiles in ice cores. Subsequent 

investigations were made to determine the rate of freezing in a borehole and the 

movement of the freeze front with time. Furthermore, results were generated for 

predicting complete freeze-up of the ice test well maintained by the Polar Ice Coring 

Office for a number of boundary conditions. 

1. Introduction 

The Polar Ice Coring Office (PICO), operated by the University of Alaska Fairbanks 
for the National Science Foundation, is charged with the development and operation of ice 
coring drills and augers for scientific research. Ice cores recovered by these devices from 
Greenland and Antarctica will provide a continuous environmental record of the past 
several centuries. Scientists are currently analyzing these cores and the gases trapped in 
their pores to determine what global climatic conditions were in the past. Recovering these 
cores from great depths in ice sheets without damage and contamination is the primary 
objective of PICO. A second goal is to collect subglacial samples from bedrock beneath 
the ice pack. 

Environmental Consideration: Common to all deep ice sampling devices to date has 
been the use of thousands of gallons of drilling fluids, such as diesel fuels, trichloroethyl­
ene, fluorocarbons, etc., in a designated pristine environment. Because of environmental 
concerns and the fact that contamination of the core may interfere with chemical analysis 
of the ice and trapped gases, thereby leading to inaccurate results, the search for an 
alternative deep ice core drilling fluid continues. We are also aware that new protocols are 
under discussion that may prohibit the use of conventional drilling fluids or, if allowed, 
may require the fluids to be pumped out of wells and removed from polar regions-a very 
expensive alternative. 

Hot-Water-Mechanical Drill: In response to these concerns, PICO has introduced a 
conceptual design for a hot-water-mechanical drill suitable for coring through thick ice 
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caps in less time with hot water as the drilling fluid. A very important factor in this design 
is to ensure that heat transmission from the hot water to the ice core does not severely 
damage the core by fracturing or melting. A complete description of such a thermo­
mechanical drill of PICO design is described in DAS et al. (1992). 

1.1. Analytical study 
For this reason, in the first phase of this study analytical solutions were developed 

(DAS et al., 1991a) to determine temperature distributions in cylindrical ice cores while 
they were subjected to different initial and boundary temperatures. The cores were 
analyzed by three models: (1) an infinite cylinder model; (2) a semi-infinite cylinder 
model; and (3) a finite cylinder model. 

In the infinite cylinder model, only radial heat conduction was considered. In the 
semi-infinite model, heat flow is assumed radially and from one end of the ice core, e.g., 
the bottom of the core before the core is broken and extracted. In the finite cylinder model 
heat conduction was assumed both radially and axially from both ends. Detailed derivation 
of these solutions and computer programs for all three models have been described by DAS 
et al. (1991b). Using these models we performed parametric studies to determine core 
sizes that are obtainable for different surface temperatures due to the presence of hot water 
in thermal-mechanical drills without jeopardizing the interior region of the cores due to 
excessive heat penetration. Furthermore, the temperature distribution in a core can be used 
by stress analysts to determine conditions that prevent fracture in cold ice due to thermal 
stresses. In a later section of this paper we have presented some temperature profile results 
from the analytical solutions and have compared them to the finite element solutions. 

The analytical methods developed during the first phase were able to predict 
temperature profiles in ice cores. These profiles gave us information about the upper 
temperature limit of the hot water in contact with the core barrel. From this information 
one can control the water temperature and flow rate in order to avoid overheating the core. 
However, these analytical techniques were based on many simplifying assumptions which 
were not necessarily valid under actual field conditions. For example, for these theories to 
apply, a constant surface temperature around the core must prevail, which may not be a 
realistic boundary condition. Therefore, improvements in these modeling techniques were 
necessary and this led to development of a general finite element model that could 
overcome the limitations of the present analytical methods. 

1.2. Finite element approach 
The finite element program was developed in two steps. In the first step, an algorithm 

was developed that could solve axisymmetric heat conduction problems with variable 
thermal properties and boundary conditions, but without the capability of handling the 
phase change aspect of the problem that occurs in thawing and freezing media. Then this 
initial portion of the program was validated by comparing the computed results with 
available analytical and numerical solutions for steady and transient heat conduction 
problems. In the second stage, the phase change ability was incorporated into the theory 
using the Dirac delta function approach of O'NEILL ( 1983a,b ). Since there are no exact 
analytical solutions available for complex phase change problems, the program was 
verified against numerical solutions and approximate integral solutions. Finally, the 



258 D.K. DAS and S.S. JOIS 

program was applied to practical cases: 
1) for determining temperature profiles in ice cores in the initial phase of heating; 2) for 
determining ice borehole freeze-up time; and 3) to obtain the time required for complete 
freezing of the PICO ice test well. 

2. Mathematical Formulation (Nonphase-Change Case) 

2.1. Governing equation and boundary conditions 
The two-dimensional heat conduction equation in cylindrical coordinates with circular 

symmetry is: 

1 a ar a ar ar - -a-(K,r-a-)+ -a- (K,-a-) +g-C-a- = 0. (1) 
r r r z z t 

Consider the two-dimensional region Q with a total boundary I'. The boundary 
conditions, in the most general form, are 

ar ar Kr ar n, + K, azn, + h (T- T�) + q = 0, on Ti, t � 0 (2) 

T = T on Ti, t � 0 (2a) 

and the initial condition is 

T = I:. in Q at t = 0 (2b) 

2.2. Semidiscrete variational formulation 
The semidiscrete variational formulation of eqs. (1) and (2) following REDDY (1984) 

can be found by multiplying the equations with a test function v and integrating them over 
a typical element Q <el with the application of the divergence theorem. 

J av a T av ar ar 
Q<e) (K,rar ar + K, r az az - vrg + Cvr at)drdz+ 

<J>/el { rvh (T- T�) + rvq } ds = 0. 
(3) 

The finite-element interpolation of the primary variable (temperature) is separated into 
spatial and time coordinates. 

T ( r, z, t ) = I. � ( t ) 'P i ( r, z ) . 
J�l 

Substituting eq. (4) and v = '\JI'; into eq. (3), we obtain the matrix equation 

[ M (e)] { f} + [ K(e) ] { T } = { p<e) } , 

where 

(4) 

(5) 



= Kki<•> + If•) , 
J lJ 

= p•> - F_•) + p•> Cl qt gt• 
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(6a) 

(6b) 

(6c) 

The simplest element for a general axisymmetric problem is an axisymmetric ring 
generated by a triangle revolved around the z-axis as illustrated in HUEBNER and THORNTON 
(1982). For triangular elements, the shape functions can be expressed in terms of area 
coordinates for which exact formulas are available in REDDY (1984) for integration over 
line path and the area. A linear interpolation function for the triangular element is 
assumed. 

1 IJ'<•>= --(a + Ar + 'V z )· 
1 2Ae 1 JJ1 11 , i = l, 2, 3 (7) 

where �, �i, y; are constants for a given element and are given by 

(8) 

After substituting eqs. (7) and (8) into eq. (6) and evaluating the line and area integrals, 
with the help of closed form expressions available from REDDY ( 1984) and SQUARE ( 1970), 
the following matrices for each element were obtained. 

where 

[ Mr�}] = 4� � [ ( � Clj Aef + a; �j + �; Clj ) 12 ( t1 
r� + 9r) + 

( a; Yi + "(; ai) �2 ( t1 r;Z; + 9fz) + �i�i 12. ( t1 
r� + 9f3 ) + 

(�iyj + y;�j) �2 c#ldz; + 9f2i)+y;yj � ctlr;z 2
+ 9ri2)] 

i and)= 1, 2, 3, 

(9) 

(9a) 

(9b) 
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[H•) ] = !!b__ + 
l 3r, + r ,  

12 r 1 r2 
0 

hi l 3r, + r ,  
+-3_1 0 12 r 1  + r3 

r 1  + r2 0 
r1 + 3r2 0 

0 0 

0 r1 + r3 
0 0 
0 r1 + 3r3 

{P�-P� }= (hT- ') I l 2r, + r ,  
= 

q 12 + 2 6 r1 r2 
0 

(hT - ') I l 2r, + r ,  

J + = q 
31 0 6 r 1  + 2r3 , 

J + �/; l 0 
0 
0 

l 
j+ (hT=- q) /23 

6 

0 0 

J 3r2 + r3 r2 + r3 
r2 + r3 3r3 + r2 

(9c) 

l 0 

J 2r2 + r3 
r2 +2 r3 

(9d) 

(9e) 

These expressions are given in detail here instead of the compact matrix form found in text 
books so that a potential user can program these expressions directly into a computational 
algorithm. 

3. Addition of Phase Change Capability 

The ability to handle phase change was incorporated into the mathematical 
formulation by introducing the Dirac delta function in the heat capacity, as demonstrated 
successfully by O'NEILL (1983a,b ). The heat capacity is expressed in terms of the latent 
heat and the Dirac delta function as 

C.ff = C + L 8 (T-To), (10) 

It is evident from eq. (6b) that the only matrix to be affected by inclusion of the latent heat 
term is the heat capacity matrix. The new heat capacity matrix equation is now 

M <•l=J Cr'P'P·drdz+ L J r8 (T-T.) ':P':Pdrdz. (11) IJ 

Q(e) I J 

Q(e) 0 I J 

For elements that do not contain the phase change isotherm, the second term in eq. (11), 
called the latent heat integral (LH/), becomes zero and the constant heat capacity term is 
evaluated in exactly the same fashion as the problem without phase change. 

To apply the property of the Dirac delta function in the evaluation of LHI, it was 
reformulated in terms of a local coordinate system ( a-r ), as shown in Fig. l, within an 
element that is undergoing phase change. This technique has been used successfully by 
GOERING (1984) and SRIVASTAVA (1988). In linear triangular elements, the phase change 
isotherm is linear and the r-axis is along and the a-axis is perpendicular to this isotherm. 
The latent heat integral in terms of the new coordinates becomes 

LHI = LJ r8 (T-To) ':P'; ':PJdadr, (12) 
Q

(e) 
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-+---------------r 

Fig. 1. A typical element showing the local coordinate system and the phase change isotherm that 
separates the thawed and frozen region. 
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where '¥ i and '¥ J are the new shape functions in terms of local coordinates and are written 
as 

(13a, b) 

Rewriting the integral in eq. (12) by introducing a temperature gradient term following 
O'NEILL {1983a, b), 

LHI = LJ r8 (T -T0) dT 'Y'i'YJ dd
a dr .  

aOO 'l' 
(14) 

The benefit of this transformation is apparent by recognizing that a mathematical property 
of the Dirac delta function integral with temperature terms is equal to unity. Therefore, the 
integral in eq. (14) simplifies to 

LHI = LJ r'Y'i 'YJ d

d
a
T 

dr . a<•> (15) 

As the temperature gradient is perpendicular to the phase change isotherm, it is also 
parallel to the a -axis. The temperature gradients are also constant within each element for 
a linear triangular element. The inverse of the gradient in integral ( 15) represents 
magnitude of the temperature gradient, which can be written as 

d a 1 --=---
dT lv'TI. 

The general expression for temperature gradient within an element is 

(16) 
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Substituting the inverse of temperature gradient in the integral of eq. ( 15), we obtain 

(18) 

The radial coordinate r is now expressed in terms of the shape functions, which are based 
on the new local coordinate ( a, r) system. 

(19) 

When expressions for the radial coordinate and modified shape functions are introduced 
into eq. (18), we find the following integral. 

(20) 

This integral (20) represents latent heat effect for the ij'h term in the element heat capacity 
matrix. The integral is evaluated within limits O to I and results in lengthy integrations. 
Fortunately, they yield exact analytical results without requiring any numerical integration. 
After the necessary algebra, we have obtained an analytic expression for the ij'h term of the 
latent heat matrix. Since this important final expression was not cited in the literature 
anywhere, we have listed the complete expression here for use by potential users. 

C 1 3 
2 + 

where C ,, C2, C3, and C4 are constants for any given element and are expressed as 

{ 'Pia ( 'J'jb - 'Pja) + 'Pja ( 'J'ib - lJ'ia)} 
{ r, ( 'P1b - 'l',.) + r2 ( 'l'2b - 'l'2.) + r3 ( 'P3b - l/'3.) }] 

' 

C = + [ { 'l'j. ( 'l'ib - 'Pia)+ 'l'i. ( 'l'jb - 'l'j.)} (r1 'l'1a + r2 'l'2. + r3 '1'3.) + 
'Pia 'l'ja { (r1 ( 'l'1b - 'l'1a) + r2 ( 'l'2b - 'l'2.) + r3 ( 'l'3b - 'P3a) }] 

' 

3.1. Thermal properties of partially frozen and partially thawed elements 

(21) 

(2Ib) 

(2Ic) 

(21d) 

In our computational steps, all elements are checked for their state. If the element is 
either completely frozen or completely thawed, then the respective thermal properties are 
assigned to the element. In case the element is undergoing phase change, it must contain 
the phase change isotherm within; therefore, the equivalent properties are calculated based 
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on the ratio of volume thawed ( or volume frozen) to the total volume of the element. The 
thermal properties of such elements are based on the following equations. 

I I Vi I Vi 
--=----+----
Keq Kr v. Kt v. . 

Inserting the expressions of volumes in axisymmetric ring elements one obtains 

I I 21tr'Ar I 21tr''At --=-- + -----
Keq Kr 21trA. Kt 21trA. ' 

where Ar and At are frozen and thawed portion of the total area A. shown in Fig. I. 
The volumetric heat capacity relation is 

(22a) 

(22b) 

(22c) 

Here, v. is the volume of the entire element, Vi is the volume of the frozen element, and Vi 

is the volume of the thawed element. Furthermore, r' is the centroid of the frozen portion 
of the element, r" is the centroid of the thawed portion of the element, and r is the centroid 
of the entire element. However, for simplicity the following approximate formulas may be 
used assuming r, r', and r" are close to one another, which will be the case for small 
triangular elements. 

(23a, b) 

3.2. Time-stepping scheme 
For transient problems we have done the time descretization with the 0 method of 

approximation described in REDDY (1984). The temperature field at the end of a time step 
Lit = tn+l - tn is obtained from the following equation. 

([MJ + 0L1t[KJ){T} n+1 = [(MJ- (1-0) L1t [KJ]{T},,+ Lit[ 0 {F} n+1+ (1-0){F} n]. (24) 

In the above equation, M and K represent the heat capacity and the conductivity matrix, as 
denoted earlier. Furthermore, F and T represent the heat load vector and temperature 
and{F} n and { T} n+1 refer to the parameters at times t,, and tn+i respectively. The well-known 
parameter 0 can have several values: 0 for the forward difference scheme, 1/2 for the 
Crank-Nicolson scheme, 2/3 for the Galerkin scheme, and 1 for the backward difference 
scheme. Both the Crank-Nicolson and the Galerkin schemes are unconditionally stable. 
We tried both of them for several test cases, and no significant difference in the final 
results were observed. Finally, we adopted the Crank-Nicolson scheme because of its wide 
usage and set 0 = 1/2 in all of our subsequent runs. 

We have developed the theory and the computational technique for our axisymmetric 
program following the two-dimensional cartesian program FEM2D of REDDY ( 1984 ). 
Further details on input, output, and running of the program, which we have named 
FEMRZ(Finite Element Model in r-z coordinates) can be found in SRIVASTAVA (1988) and 
J01s (1992). In addition to ice drilling problems, this program has also been applied 
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successfully to predict dissociation of natural gas hydrates, which has been described by 
DAS and SRIVASTAVA (1991). 

4. Validation (Nonphase-Change Cases) 

4.1. Steady-state heat conduction examples 
Case 1: An infinitely long, hollow cylinder of inner radius 1 m and outer radius 2 m is 
considered. Temperatures at the inner and outer surfaces are prescribed as 1000 °C and 
0 °C, respectively. With forty elements and forty-two nodes, as shown in Fig. 2a, this 
problem was solved by the present finite element method. Our computed results match 
exactly with the analytical and numerical solutions presented by RAO (1989) for this 
problem, as seen from Fig. 2b. 
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Fig. 2. (a) Mesh used to simulate the radial heat conduction problem in RAo (1989). 

2 

(b) Comparison between the solution given in RAo (1989) and the present finite element results. 

Case 2: This problem consists of heat flow in a composite cylinder comprised of two 
media (Fig. 3a) as presented by HUEBNER and THORNTON (1982). The inner surface of the 
cylinder is held at T = 200 °C, while the outer surface of low conductivity insulation is held 
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Fig. 3. (a)Geometry of the insulated hollow cylinder from HUEBNER and THORNTON (1982). Thermal 
conductivity K in Wlm· 0C. 

(b)Mesh used to solve the problem in HUEBNER and THORNTON (1982). 
(c) Comparison between the solution given in HUEBNER and THORNTON (1982) and the present 

finite element solution. 
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at T = I 00°C. This problem was simulated with twenty elements and twenty-two nodes as 
shown in Fig. 3b. As evident from Fig. 3c, the finite element solution exactly matches the 
analytical and numerical solutions given in HUEBNER and THORNTON ( 1982). 

4.2. Transient heat conduction examples 
Case 3: This transient heat transfer problem with convective boundary condition has been 
taken from WHITE ( 1984 ). A short cylinder 16 cm high with a diameter of 6 cm is initially 
at 40°C and is then plunged into a fluid with h = 300 W/m2 · K and an ambient temperature 
of 200°C. The material is bronze with a conductivity of 26 W/m · K and diffusivity of 8.6 
(10�) m2/s. 

Because of symmetry about r-and z-axes, only one-quarter of the cylinder is modeled. 
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Two different types of mesh were used to ascertain that results would not change by 
changing mesh orientation (Figs. 4a and 4b): a) standard skew mesh, and b) reverse skew 
mesh. Both gave the same results and comparison of temperature at the center of the 
cylinder versus time in Fig. 4c shows a good agreement between analytical results from 
White and our finite element results. The analytical solution was obtained on the 
centerline using Heisler centerline formulas given by WHITE ( 1984 ). 
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Fig. 4. (a) Mesh with a standard skewness to model the problem in WHITE (] 984). 
(b) Mesh with a reverse skewness to verify mesh independence. 
(c) Comparison of temperature rise with time at the center of the cylinder by the present method 

and the solution in WHITE (1984). 

Case 4: A 10 cm diameter, 16 cm long cylinder with conductivity 0.5 W/m·K and a 
diffusivity of 5(10-1) m2/s is initially at a uniform temperature of 20°C. Suddenly, it was 
placed in hot air at 500 °C and a convective coefficient of 30 W/m2 ·K. Because of 
symmetry about r-and z-axes, only one-quarter of the cylinder is considered. As we did 
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for Case 3, to test mesh dependence, two different types of meshes were used based on standard and opposite skewness (Figs. 5a and 5b ) . The radial temperature profiles at the top (z= O) and at the center (z =8 cm) of the cylinder after thirty minutes of heating are compared with the analytical solution of KRIETH and BOHN ( 1 986) in Fig. 5c. Both profiles show excellent agreement with the analytical solutions and demonstrate that changing skewness has minimal effect on this program. 
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Fig. 5. (a) Mesh 1 with standard skewness to model the problem in KREITH and BOHN (1986). 
(b)Mesh 2 with reverse skewness to verify mesh independence. 
(c) Comparison of radial temperature distributions at the top and center of the cylinder after 30 

minutes of heating via the present .finite element method (FEM) and the analytical solutions 
from KREITH and BOHN (1986). 

4.3. Validation of the method for phase change cases Case 5: This problem of thawing around a circular pipe from LUNARDINI ( 1 98 1 )  is an excellent source of comparison between four different solutions of a cylindrical phase 
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change problem as shown in Figs. 6a and 6b. The problem is tested with a radially varying 
mesh of 18 elements and 20 nodes for two values of superheat factor </J. The results of 
Sparrow, and Tien and Churchill, adapted from Lunardini and shown in Fig. 6b, are from 
numerical solutions. On the same figure, curves of approximate analytical solutions from 
the method of Lunardini, and the heat balance integral (HBI) method are also displayed. 
The analytical methods are described in detail in LUNARDINI (1981 ). Our finite element 
results show good agreement with all four methods, as observed in Fig. 6b. 
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Fig. 6 (a) Mesh used.for computation of thawing around a circular pipe from LUNARDINI (/981). 
(b) Comparison offour different methods .from LUNARDINI (/981) with the present finite element 

method. 

Case 6: This problem of radial freezing of water-saturated sand was taken from O'NEILL 
(1983a). It consists of outward radial freezing around an infinitely long hollow cylinder 
with time-dependent boundary conditions. The histories of boundary temperatures are 
presented by O'NEILL (1983a), which we inserted into our program by a polynomial as a 
function of time. The physical properties used for water-saturated sand and the mesh (324 
elements, 196 nodes) used to simulate the problem are shown in Jrns (1992). The program 
was run for 100000 (27 hours) and the freeze-front radius presented in Fig. 7 was found to 
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Fig. 7. Comparison of radial freezing in water-saturated sand between the results presented by O'NEILL 

(1983a) and the present finite element method. 

be in good agreement with the analytical solution presented by O'NEILL ( 1983a ). 

5. Applications 

5.1. Prediction of temperature profiles in ice cores 
In hot-water ice coring, the thermal shock caused by warm water coming in contact 

with cold ice can result in thermally-induced stresses which can cause cracking of the 
cores. To determine these stresses, one must find the transient temperature profiles. 

This example presents such a case for a finite ice cylinder undergoing transient heat 
conduction. This transient axisymmetric heat conduction problem yields to an analytical 
solution described in DAS et al. (1991a) expressed in a non-dimensional form. A similar 
solution is also reported by MYERS ( 1987) in a dimensional form. A short cylindrical ice 
core of 20 cm in diameter and 50 cm in length is considered whose geometry is shown in 
Fig. 8a. Because of the symmetry about r-and z-axes, only one-quarter of the cylinder (25 
cm height x 10 cm width) is considered for simulation of this problem. The ice cylinder is 
initially maintained at a temperature of -40°C. The lateral and the circumferential surfaces 
of the cylinder are maintained at 0°C. The thermal diffusivity of ice is taken as 1.33 x 1 o-6 

m2/s. The mesh used to simulate the problem consists of 200 elements and 121 nodes, as 
displayed in Fig. 8b. The sides representing symmetry in Fig. 8b are considered insulated. 
Two comparisons (Figs. 8c and 8d) were made for several temperature profiles: the first 
one for different axial positions at time t = I 000 s, and the second one for different non­
dimensionalized times at a fixed axial location of Z = 0.5 (mid-section of the cylinder). As 
seen from these plots, the finite element solutions match accurately with the analytical 
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Fig. 8. (a) Geometry of a finite cylindrical ice core. 
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Fig. 8. (d) Comparison between the present finite element solution and the analytical solution from MYERS 

(1987) and DAs et al. (1991a) for radial temperature profiles at mid-section of a finite cylinder 
at different time intervals. 

results obtainable through the series solution in DAS et al. (1991a) and MYERS (1987). 

5.2. Freezing of boreholes 
For the thermo-mechanical drill developed at PICO, one of the drilling fluids we are 

experimenting with is hot water. After the coring operation is complete, residual water is 
left in the boreholes. The same is the case for pure thermal drilling by a hot-water nozzle. 
Often the boreholes are kept open for a long period of time to conduct downhole 
experimentation. Therefore, an estimate of the freezing rate of these boreholes is a 
necessity. 

The case considered here is for the inward radial freezing around a water hose of 3 cm 
diameter. The hose is placed in a borehole drilled in ice that has a diameter of 40 cm. The 
one-dimensional mesh with 30 elements and 32 nodes used to simulate the problem is 
shown in Fig. 9a. The temperature of the residual water in the borehole is 5°C (KOCI, 

1984). The following thermal properties were taken as the input parameters from YEN et 
al. (1991). For the frozen zone, thermal conductivity K = 2.298 W/m· °C and the specific 
heat C = 2.100 kJ/kg· °C. For the thawed zone, thermal conductivity K = 0.5819 W/m· °C 
and the specific heat C = 4.186 kJ/kg· 0C. Latent heat L = 305361 kJ/m3, and the phase 
change temperature = 0 °C. In Fig. 9a displaying the mesh, the inner radial boundary at the 
hose surface is maintained at 5°C and the outer radial boundary is -5°C. The top and 
bottom surfaces are considered insulated. Figure 9b shows temperature profiles at different 
time intervals. 
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Fig. 9. (a) Mesh used for simulating the one-dimensional model of borehole freezing with a hose at the center. 
(b) Temperature profiles in the borehole during freezing at different time intervals for an ice tempera­

ture of-50 °C 

Next, we ran the program for different borehole wall temperatures. The borehole wall 

temperatures (i.e. , boundary condition at outer radial boundary) employed for this 

simulation are taken from HUMPHREY and ECHELMEYER (1990). As is evident from Fig. 9c 

showing the movement of the freeze front with time, the lower the temperature at the 

borehole wall, the less time it takes to refreeze. 

The next case considers a large borehole (76 cm) made by hot-water drilling and is 

left water-filled with the hose removed. A one-dimensional mesh (Fig. 1 Oa) with 76 

elements and 78 nodes was used to simulate the inward radial freezing of this borehole 

with a radius of 38 cm (Koci, 1984). The thermal properties used for simulating this 

problem are the same as those for the previous example. The centerline and the top and 

bottom surfaces were considered to be insulated. The outer boundary temperatures were 

assigned two different values . The program was run with two different borehole wall 

temperatures of 245 K (-28
°
C)and 256 K (-17

°
C) (Koci, 1984). The progression of the 

freeze front at different time intervals is shown in Fig. 1 Ob. 

2-D Borehole Case: This case is for an axisymmetric freezing problem for the 70-cm 

borehole in r-z plane. The mesh used for simulating this case consisted of 506 elements 
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Fig. 9. (c) Locations of radii of freezing at different times within the borehole subjected to different wall 
temperatures from HUMPHREY and ECHELMEYER (1990). 

and 288 nodes and is presented in Fig. I la. The borehole radius is 20 cm and the hose 
radius is 1.5 cm; they are the same as one of the previous problems. The height of the 
borehole modeled is 100 cm. The top and the bottom boundary of the borehole in Fig. 11 a 
are subjected to constant temperatures of -20°C and -50°C respectively, while the inner 
and the outer radius of the borehole are held at temperatures of l .8 °C and -40 °C 
respectively (Kocr, personal communication, 1992). Initial temperature of water left in the 
borehole was l .8 °C. These temperatures can all be changed to suit field values and many 
cases can be run with this program. The migration of the phase change isotherm in this 
two-dimensional problem subjected to the specified boundary conditions is presented in 
Fig. 11 b. Notice the progress of freezing until the time 46210 s (12.8 hr) when completion 
of freezing around the hose occurs. The time to finish freezing will change with other 
boundary and initial temperatures and can be explored easily by repetitively running the 
program. 

5. 3. Freezing of PICO ice test well 
The PICO ice test well is shown in Fig. 12a. The inside radius of the well is about 50 

cm. The mesh used for simulating this as a one-dimensional case consists of 24 elements 
and 26 nodes, as presented in Fig. 12b. The temperature of the water left in the well was 
assumed to be l .66°C (35°F), which can be easily changed for other test runs. Boundary 
conditions for the finite element mesh of Fig. 12b are: the centerline and the top and 
bottom surfaces were considered to be insulated whereas the outer radial surface was 
assigned values(see Table 1) varying from -l  8 °C (0 °F) to -0.11 °C (3 l.8 °F) - the 
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Fig. ] 0. (a) Mesh employed for simulation of borehole freezing with no hose. 
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temperatures (Koci, 1984). 

temperature of the permafrost surrounding the well. The program was run for these 
different boundary temperatures (which can be attained through the cooling coil provided 
around the periphery of the well). 

The freezing time required for complete closure of the well is shown in Table 1. 
Different time steps used in the computations were .1t = 40, 50, 100, 200, and 400 s 
without any perceptible change in the final results. Therefore, the program is stable and 
does not show unusual variations with different time steps. Finally, a time step Lit of 100 s 
was adopted to generate the freezing time given in Table 1. From this table we see natural 
freezing by the influence of permafrost will take 1. 8 years. The closure rates are dependent 
on boundary temperatures and the initial water temperature. 
2-D Test Well Simulation : This is a two-dimensional treatment of the same problem 
involving the ice test well in an r-z plane. The mesh consists of 460 elements and 264 
nodes as shown in Fig. 13a. Half of the height of the well was simulated for illustration 
purposes so that we have less elements to compute. The water column in the well was 
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Fig.12. (a) Geometry of the PICO ice test well. 
(b) Mesh employed to simulate freezing of the ice test well. 

Table 1. Time taken for complete freezing of the PICO ice test well. 

Boundary temperature Time in days 

- l 8°C (O'F) 6 

- 12° C ( l O'F) 8.5 

-TC (20 °F) 1 5 .3 

-4 °C (25 ° F) 25.8 

-1 'C (30 °F) 88.4 

-0. 1 1  °C (3 1 . 8 °F) 660 
(permafrost) 
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(b) Migration of the phase change isotherm with time in an r-z plane for freezing of the ice test well. 
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assumed to be 6.86 m (22.5 feet) high. The boundary conditions at the top, the bottom, and 
the outer surfaces of the modeling zone in Fig. 13a are subjected to temperatures of -7 °C 
(20 °F) (cold air), -0.11 °C (permafrost), and -TC (20 °F) (cooling coil), respectively. The 
centerline of the domain in Fig. 13a conforms to insulated condition due to symmetry. The 
progression of the phase change isotherm as time progresses is illustrated in Fig. 13b, 
representing the right side as the frozen zone and the left side as the unfrozen zone. 

6. Conclusions 

A finite element algorithm for solving heat conduction problems with phase change in 
a cylindrical (r-z) coordinate system was developed and implemented in the finite element 
code FEMRZ . The inclusion of phase change ability was accomplished by using the Dirac 
delta function to simulate effective heat capacity. Validation of the method at various 
stages of its evolution showed good performance. Six test cases of steady and unsteady 
heat conduction with and without phase change demonstrated accuracy of the results 
produced by this program. The program was then applied to ice drilling problems to 
predict temperature profiles in ice cores and the freeze-up of boreholes and the PICO ice 
test well. 
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A. 
Ar 
A, 
C 
cp 
C.rr 
C.q 
Cr 
Ci 
p 
g 
h 

r,z 

V 

Nomenclature 

area of the element 
frozen element area 
thawed element area 
volumetric heat capacity = pCp, J/m3 

• °C 
specific heat, J/kg ·°C 
effective volumetric heat capacity 
equivalent volumetric heat capacity 
volumetric heat capacity of frozen material 
volumetric heat capacity of thawed material 
density, kg/m3 

heat source/sink in the system, W /m3 

convective coefficient, W/m2 · °C 
equivalent thermal conductivity, W/m·°C 
thermal conductivity of frozen material 
thermal conductivity in r - direction 
thermal conductivity of thawed material 
thermal conductivity in z - direction 
latent heat, J/m3 

length of linear isotherm within the element 
length of the i-j side of a triangular element 
prescribed heat flux at boundaries, W/m2 

coordinates of the i 'h node of an element 
coordinates of the centroid of an element 
time 
variable temperature 
initial temperature 
phase change temperature 
ambient temperature 
prescribed temperature at boundaries 
test function 
convective term matrix 
conductivity matrix 
heat capacitance matrix 
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{Fe} { Fq} { Fg} 
a, [3, y 
r (e) 

8 
P i, Pj 

P ia, Pja 

p ib, pjb 
Q (e) 
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convective, heat flux, and heat source/sink vectors, respectively 
coefficients of shape function 
boundary of an element 
Dirac-delta function 
shape functions 
value of shape function evaluated at point a 
value of shape function evaluated at point b 
domain of an element 


