Regional sea-level highstand triggered Holocene ice sheet thinning across coastal Dronning Maud Land, East Antarctica

Yusuke Suganuma^{1,2}, Heitaro Kaneda³, Martim Mas e Braga^{4,5}, Takeshige Ishiwa^{1,2}, Takushi Koyama⁶, Jennifer C Newall^{4,5,7}, Jun'ichi Okuno^{1,2,} Takashi Obase⁸, Fuyuki Saito⁹, Irina Rogozhina¹⁰, Jane Lund Andersen^{4,11}, Moto Kawamata^{1,12}, Motohiro Hirabayashi¹, Nathaniel A Lifton^{7,13}, Ola Fredin¹⁴, Jonathan M Harbor^{4,5,7,15}, Arjen P Stroeven^{4,5}, Ayako Abe-Ouchi^{1,8} ¹Affiliation of First Author (Times New Roman 10 pt Italic) ²Affiliation of Second and Third Authors ¹National institute of Polar Research, 10-3, Midori-cho, Tachikawa, 190-8518, Japan ²The Graduate University for Advanced Studies (SOKENDAI), Japan ³Department of Civil and Environmental Engineering, Chuo University, Tokyo, Japan ⁴Geomorphology and Glaciology, Department of Physical Geography, Stockholm University, Stockholm, Sweden ⁵Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden ⁶Department of Geography, Oita University, Oita, Japan ⁷Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafavette, Indiana, USA ⁸Atmosphere Ocean Research Institute, University of Tokyo, Kashiwa, Japan ⁹Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan ¹⁰Department of Geography, Norwegian University of Science and Technology, Trondheim, Norway ¹¹Department of Geoscience, Aarhus University, Aarhus, Denmark ¹²Civil Engineering Research Institute for Cold Region, Sapporo, Japan ¹³Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA ¹⁴Department of Geoscience and Petroleum, Norwegian University of Science and Technology, Trondheim, Norway ¹⁵Purdue University Global, West Lafayette, Indiana, USA

The East Antarctic Ice Sheet stores a vast amount of fresh water, which makes it the single largest potential contributor to future sea-level rise. However, the lack of well-constrained geological records of past ice sheet changes impedes model validation, hampers mass balance estimates, and inhibits examination of ice loss mechanisms. Here we identify rapid ice-sheet thinning in coastal Dronning Maud Land from Early to Middle Holocene (9,000-5,000 years ago) using a deglacial chronology based on in situ cosmogenic nuclide surface exposure dates from central Dronning Maud Land, in concert with numerical simulations of regional and continental ice-sheet evolution. Regional sea-level changes reproduced from our refined ice-load history show a highstand at 9,000-8,000 years ago. We propose that sea-level rise and a concomitant influx of warmer Circumpolar Deep Water triggered ice shelf breakup via the marine ice sheet instability mechanism, which led to rapid thinning of upstream coastal ice sheet sectors.

References

Suganuma et al. Regional sea-level highstand triggered Holocene ice sheet thinning across coastal Dronning Maud Land, East Antarctica, Communications Earth & Environment, 3, 273, 2022.