Comparison between Ca⁺ layer and sporadic E layer over Syowa Station

Mitsumu K. Ejiri^{1,2}, Takanori Nishiyama^{1,2}, Takuo T. Tsuda³, Katsuhiko Tsuno⁴, Yuki Kojo⁵, Akinori Saito⁵, Michi Nishioka⁶, Takuji Nakamura^{1,2}, Makoto Abo⁷, Takuya Kawahara⁸, Takayo Ogawa⁴, Satoshi Wada⁴ ¹Natianl Institute of Polar Research, ²SOKENDAI, ³The University of Electro-Communications, ⁴Riken RAP, ⁵Kyoto University, ⁶NICT, ⁷Tokyo Metropolitan University, ⁸Shinshu University

Sporadic E (E_s) layers in the mid-latitudes are generally accepted to be formed when metal ions in the MLT region converge in a thin layer due to the vertical shear of neutral atmospheric horizontal winds, especially zonal winds. On the other hand, the auroral E_s layer produced by energetic particle precipitation during auroral substorms is well known as an E_s layer in polar regions, but there is also an Es layer that occurs during geomagnetic quiet time. At that time, metal ions are thought to play an important role in the Es formation process. To verify this, we investigated the relationship between the Ca⁺ ion layer and the Es layer observed by a resonance scattering lidar and ionosonde, respectively, at Syowa Station.