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Abstract: Presented here is an interpretation of the discrete ordinate method 

which has been used to solve the transport equation of auroral electrons in the 

atmosphere, and the accuracy of this method is discussed with different orders of 

approximations by numerical analysis. The discrete ordinate method is based 

on an implicit assumption on the angular distribution of electron intensity. The 

three types of two-stream approximations (single-Gauss, double-Gauss and 

Eddington's approximations) are characterized by the different assumptions on 

which each type is based. The error analysis is given on the energy deposition rate 

and the energy albedo. The double-Gauss 4-stream approximation is found to 

be practical in obtaining these two quantities with the accuracy within a few 
percent, whereas the error in the single-Gauss 4-stream approximation amounts 

to about 20% for the energy albedo. For the energy deposition rate, any of the 

two-stream approximations for the incident energies of keV regions has the ac­

curacy comparable to that of the calculation without taking electron scattering 

into account. For the energy albedo, the errors in the two-stream approximations 

exceed about 30% in the same energy range. 

1. Introduction 

Among the various attempts to describe the collisional interaction of auroral 
electrons with the neutral atmosphere, a method to solve the full transfer equation has 
been developed for more than a decade. In this method, discrete energy losses of 
electrons due to inelastic collisions and wide-angle scattering due to elastic collisions 
are taken into account for a wide energy range in a single manner. BANKS and NAGY 
(1970) , and NAGY and BANKS (1970) formulated an equation in a two-stream approxi­
mation for electrons with energies below 100 eV, where scattering through on elastic 
collision is fairly isotropic. MANTAS (1975), and MANTAS and WALKER (1976) carried 
out the same kind of calculation in a multi-stream approximation for electrons in the 
same energy range. Using the multi-stream approximation (20 grid points in µ-space, 
where µ is the cosine of the electron pitch angle) , STRICKLAND et al. (1976) extended 
the energy range up to a few tens of keV, where elastic scattering of electrons is strongly 
anisotropic. In these multi-stream approximations, intervals between neighboring 
µ-grid points seem to be constant. On the other hand, STOLARSKI (1972) applied the 
discrete ordinate method, in which the Gaussian quadrature formula plays an impor­
tant role, to the problem of photoelectron transport in the atmosphere. This method 
was used widely in the field of radiative transfer. STOLARSKI (1972), however, did 
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not mention its superiority resulting from the use of the Gaussian quadrature formula. 
The discrete ordinate method was further discussed by STAMNES (1977) for the trans­
port problem of photoelectrons and was applied to auroral electrons by STAMNES 
(1980). STAMNES (1980, 1981) discussed the validity of the two-stream approximation 
which is the lowest order approximation of the discrete ordinate method, and showed 
that the two-stream approximation would provide adequate results, especially in the 
estimation of backscattered and height integrated quantities. However, his work 
has left a few points to be discussed further. First, as regards height profiles of the 
electron intensity, evaluation of accuracy in several orders of approximations is made 
for "non-degraded" (denoted as "non-absorbed" by STAMNES, 1980) electrons, which 
keep their initial energies in successive collisional processes, in the collision depth 
space. The argument about convergency of the solution, which includes the effect 
of degraded electrons, with various orders of approximations was given by TAKAHASHI 
(1975), but it was made only for the primary energy of 200 eV. Second, although 
there are three types of two-stream approximations, as will be shown in the next 
section, the relationship among these types discussed by STAMNES (1977, 1980, 1981) 
seems to include some confusion in making proper choice of a set of parameters. 

It is necessary to include the effect of multiple scattering of electrons for modeling 
of interaction between auroral electrons and the atmosphere. However, since high 
order multi-stream calculations require many computational tasks, it is desirable to 
use the low order approximation as far as possible. The purpose of this paper is 
to clarify the assumptions on which the discrete ordinate method is based and, in 
particular, to describe the distinction among different types of two-stream approxima­
tions. Furthermore, the accuracy of the discrete ordinate method with different 
orders of approximations is discussed in detail. 

2. Discrete Ordinate Solutions 

The equation for the transport of electrons along a magnetic line of force in the 
atmosphere is given by (ST AMNES, 1980) 

where 

,u d
d J(-r, £, ,u)=/(r, E, µ)- we(� E) \

1 

Pe(µ, µ')I(-r, E, µ')dµ' 
'[ J_l 

1(-r, E, µ): intensity of electrons in unit of cm- 2 sr- 1 s- 1 ev- 1
, 

£: electron energy, 
-r: collision depth, 

we: single scattering albedo, 
pe(µ, µ'): phase function, i.e., normalized differential cross section for elastic 

scattering, 
pie(µ, µ'): phase function for inelastic scattering, 

R( T, E, E'): normalized redistribution cross section in energy space for in­
elastic collision at -r. 
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The second term on the right-hand side denotes multiple scattering due to elastic colli­
sions and the third term describes cascading from higher energies. 

For simplification, we assume a single-constituent atmosphere and consider only 
"non-degraded" electrons in this section. Then eq. (1) becomes 

µ :r l(r, µ)=l(r, µ)- �e 1�/e(µ, µ')l(r, µ') dµ' . (2) 

In this equation, the phase function can be expanded into a series of Legendre poly­
nominals in the form 

00 

Pe(µ,µ')= E (21+ I)x1P1(µ)P1(µ') , (3) 
l=O 

where 

and (9 is the scattering angle. The procedure of the discrete ordinate method is given 
by STAMNES (1980) and STAMNES and SWANSON (1981) in detail. 

The discrete ordinate method of order n, that is 2n-stream approximation, is well 
known as a procedure by which an integro-differential equation is reduced to a simul­
taneous system of 2n ordinary differential equations. In this method, the integral 
term in eq. (2) is replaced by a sum of terms multiplied by weighting factors inherent 
in the quadrature rule. When the Gaussian formula is applied to the whole range in 
µ-space, replacement of an integral term by a summation is an exact transformation 
if the integrand, p

e(µ, µ')!(µ'), is a polynomial of order less than or equal to 4n-l 
in µ'. This means that the electron intensity is assumed to be a function ofµ of order 
2n when the known quantity pe(µ, µ') is approximated by a function of order 2n-I. 
In order to make this approximation on p

e(µ, µ'), we truncate the order of expansion 
in eq. (3) by 2n-I. 

For n=I, that is the two-stream approximation, eq. (2) reduces to 
d/+ (r) 

p. dr =[l-<JJ0(1-j3)]/+(r)-w0/3/-(r) , 

d/-( ) -p. dr T =[1-<JJe( l-;9)]/-(r)-w0p/+(r) , 

where µ=1/,v3, /±(r)=/(r , ±P.) and 

(4) 

(5) 

(6) 

According to the above interpretation, I(µ) is assumed to be a linear function of µ 
and is not regarded to be hemispherically isotropic. Here, ±P. are merely the quad­
rature points and not the mean values of µ. Similarly, /± are the values of I(µ) at 
µ= ±P. and not the upward- and downward-hemispherically mean values of the 
intensity. 
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On the other hand, in the two-stream approximations, there is an approximation 
called the Eddington's two-stream approximation which is independent of the dis­
crete ordinate method and is based on the assumption that the electron intensity is 
hemispherically isotropic (e.g. GoooY, 1964). Without any other assumptions, in 
other words, without the approximation on the phase function, we can obtain a set 
of equations formally identical to eqs. (4) and (5) from eq. (2). In this approximation, 
however,µ is the mean value of .u being equal to 1/2 and 

p=+\
1

d,u \
0 

dp'p
e

(p, ,u'). 
Jo J _1 

J± are the upward- and downward-electron intensity and p denotes the probability 
that an electron is scattered from one of the hemispheres to the other through an elastic 
collision with a neutral particle. It should be noted that, strictly speaking, f3 given by 
eq. (6) does not have the same meaning as that shown immediately above. 

In the above discussion on the discrete ordinate method, the Gaussian formula 
is applied to the entire range of ,u (-1 <,u< I) (hereafter referred to as single-Gauss). 
However, it is also possible to apply the Gaussian formula separately to the half ranges, 
-1 <.u<O and 0<.u< 1 (SYKES, 1951; STAMNES, 1977) (hereafter referred to as double­
Gauss as denoted by SYKES, 1951). In the same manner as the single-Gauss approxi­
mations, it will be shown that, for the double-Gauss 2n-stream approximation, the 
electron intensity is assumed to be functions of .u of degree n- I in the plus and minus 
p-regions separately under the approximation that the phase function is a polynomial 
of .u of degree n. For isotropic scattering, SYKES (1951) showed that the double-Gauss 
approximation is superior to the same order single-Gauss approximation and STAMNES 
(1977) also obtained the similar result. However, this conclusion is not necessarily 
valid for anisotropic scattering, partly because the phase function must be truncated 
for this case, whereas the approximation of phase function is not required for isotropic 
scattering. The reason why the double-Gauss method was introduced is the fact 
that, at ,u=O, the electron intensity has a discontinuity at r=O and is not smooth at 
shallow:-. 

In the double-Gauss two-stream approximation, similarly to the single-Gauss 
case, we can also obtain a set of equations formally identical to eqs. (4) and (5) from 
eq. (2), whereµ denotes the quadrature point and has a value of 1/2, and p=(l-3Xi/4)/ 
2. In this approximation, the phase function is expressed as a linear function of p. 
However, noting that the electron intensity is regarded to be isotropic in each of the 
hemispheres, the truncation of the phase function is no more required. Consequently, 
the double-Gauss two-stream approximation is included in the Eddington's two­
stream approximation in principle. 

3. Results 

For numerical analysis, this paper assumes simply a nitrogen molecule atmo­
sphere in which the distribution of the number density is identical to that of the total 
density given in the CIRA (1972) mean atmosphere. All results shown below are 
obtained for the incidence of mono-energetic electrons at the top of the atmosphere. 
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Fig. 1. Relative errors in the following quantities as functions of the incident electron energy: the 
height, h, at which the energy deposition rate in the neutral atmosphere reaches its maximum 
(uppermost), the peak value of the energy deposition rate, p (middle), and the height­
integrated energy deposition rate, P (bottom). The peak height error, '1h, is normalized by 
the half maximum width, hh, of the energy deposition profile. The numbers 2 and 4 refer 
to the single-Gauss 2- and 4-stream approximations, respectively. D4 denotes the double­
Gauss 4-stream approximation and Edd is the Eddington's 2-stream approximation. The 
results of the calculation in which the scattering effect is not taken into account are also 
shown (No scat.). The isotropic electron incidence and the cosine dependent incidence 
are assumed for the left- and right-hand side figures, respectively. 

The effects of secondary electrons and degraded primary electrons are included unless 
otherwise noted. 

In Fig. 1, the relative errors estimated in quantities concerning the energy deposi-



350 Ken KUSIDA and Hiroshi KAMIYAMA 

tion rate in the neutral atmosphere are shown as functions of the incident electron 
energy for several orders of approximations for two boundary conditions; i.e., an 
isotropic electron incidence and a cosine dependent incidence. The uppermost panels 
show the errors in the height, fz, at which the energy deposition rate reaches its maxi­
mum. These errors are normalized by the half maximum widths of the energy dep­
osition profiles derived from the double-Gauss 8-stream approximation. Absolute 
values of height deviations, Llfz, are also shown by contour lines. The errors in the 
peak value of the energy deposition rate, ft, are given in the middle panels, and the 
bottom panels show those in the height-integrated energy deposition rate, P. For 
reference, the results obtained by neglecting scattering effects are also shown by the 
heavy dashed lines. In evaluating the errors, the results from the double-Gauss 8-
stream approximation are taken as the standards, because in the preliminary cal­
culation for "non-degraded" electrons the relative errors in the double-Gauss 8-
stream approximation were found to be within about 0. 1 % for the quantities concern­
ing the energy deposition rate and within about 1 % for the backscattered flux as 
compared with the double-Gauss 32-stream approximation. Concerning the height­
integrated energy deposition rate, the double-Gauss 4-stream approximation gives the 
results with an accuracy within 0.5% in the full energy range, whereas those of the 
single-Gauss 4-stream approximation have an accuracy within about 2%. On the 
other hand, the errors in results from the single-Gauss two-stream approximation are 
about 10% and those from the Eddington's approximation amount to several tens of 
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--- 4 st. 
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---- ---· 

ENERGY DEPOSITION RATE , <evtcm3 YCelectron/cm2> 

Fig. 2. Energy deposition profiles per unit number flux of incident electrons. The results cal­
culated from several approximations are shown/or the isotropic incidence of mono-energetic 
electrons at 300 e V and 5 ke V. 
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Fig. 3. Upper panel: Energy albedos, which include the contribution of secondary electrons and de­
graded electrons, shown as Junctions of the incident electron energy. Solid line (isotropic 
incidence) and dashed line (cosine incidence) are calculated from the double-Gauss 8-
stream approximation. Symbol $ shows the results from the double-Gauss 4-stream 
approximation for the isotropic incidence. 
Lower panel: Relative errors in the albedo for several approximations for the isotropic 
(solid lines) and the cosine dependent (dashed lines) incidence. 

percent at higher incident energies. The errors in the two-stream approximations for 
keV electrons are quite comparable to those in the calculation which assumes no­
scattering. For the two quantities, fz and ft, shown in the upper and the middle panels, 
the similar conclusion to the above is obtained except that the single-Gauss and the 
double-Gauss 4-stream approximations have the same degree of accuracy with the 
maximum error of about 3 % . 

The profiles of the energy deposition rate for unit flux (1 electron/cm2 s) incidence 
of isotropic and mono-energetic electrons (300 eV and 5 keV) are shown in Fig. 2. 
The result of the double-Gauss 4-stream approximation agrees well with that of the 
double-Gauss 8-stream approximation which is, as mentioned earlier, sufficiently 
accurate. 

In the upper panel of Fig. 3, the energy albedos are shown as functions of the in-
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cident energy for the double-Gauss 8-stream approximation, where the energy albedo 
is defined as the ratio of the energy flux of the backscattered electrons to that of in­
cident electrons. The albedo errors in several orders of approximations are given in 
the lower panel. The errors resulting from the two-stream approximations are fairly 
large and, in particular, the Eddington's two-stream approximation is quite inaccurate 
at h igher incident energie::;. The double·-Gauss 4-stream approximation is always 
accurate with in about 2 % ,  whereas the errors i n  the single-Gauss 4-stream approxi­
mation become large towards higher incident energies, being about 20% at 10 keV . 
Even if the maximum error in the double-Gauss 8-stream approximation which was 
adopted to obtain the standards is as large as 1 %,  the maximum error in the double­
Gauss 4-stream approximation would not exceed about 3% . 

4. Discussion 

In Section 2, it was mentioned that the double-Gauss two-stream approximation 
is included in the Eddington's two-stream approximation. This means that the double­
Gauss two-stream treatment is obtained by adding an approximation of the phase 
function to the Eddington's two-stream approximation. Therefore, in principle, the 
Eddington's approximation is thought to be more accurate than the double-Gauss 
two-stream approximation. However, as shown in Table l which gives the results 
from the three types of two-stream approximations for "non-degraded" electrons, 
we obtained the results contrary to the above expectation. This may be partly due 
to the situation that, in the double-Gauss two-stream approximation, an error due to 
the approximation to the phase function cancels an error arising from the assump­
tion that the electron intensity is isotropic in each of the hemispheres. It is noted, 
however, that the double-Gauss two-stream treatment has, in general, only the same 
degree of accuracy as the single-Gauss two-stream approximation. 

Finally, we will briefly discuss the o-M method which was developed by W1scoMBE 

( 1977) in order to obtain a better approximation to the phase function than the ordinary 

Table 1. Comparison among three types of the two-stream approximations for "non-degraded" 
electrons for the isotropic incidence. The "non-degraded" electrons refer to the elec­
trons within the specified energy cell. The energy deposition rate here concerns only 
"non-degraded" electrons. The results from the double-Gauss 32-stream approximation 
are also shown as the standards. 

Incident energy 
Width of 

energy cell 

Energy deposition 
peak height (km) 

£= 10 keV 500 eV 

(L1£= 1 keV) (50 eV) 
---- -----��-- - ·� -·--·- ·-

SG 2-stream 
DG 2-stream 
Eddington 
DG 32-stream 

----------- ------- "'··-- --

1 1 7 . 8  
1 1 9 . 4  
1 22 . 1 
1 1 6 . 2  

-----·---- -- ------* A(-2) reads A x  10- 2
• 

297 
306 
309 
293 

.. ------ -----------

Maximum 
deposition rate 
(arbitrary unit) 

lO keV 500 eY 

(1 keV) (50 eV) 
-- - - - ----- --- - -

1 . 20 1 .  25 
0 . 95 1 . 06 
0 . 75 1 . 03 
l . 00 1 . 00 

Flux albedo 

1 0  keV 500 eV 
(1 keV) (50 eV) 

-- ------- --------�----- ·----

5 . 55 (-2) 4 . 46 (-2)* 
6 . 32 (-2) 4 . 73 (-2) 

1 7 . 8  (-2) 8 . 1 3 ( -2) 
3 . 77 (-2) 3 . 9 1 (-2) 



Discrete Ordinate Solutions for Auroral Electrons 353 

technique by introducing the Dirac delta function in the Legendre polynominal ex­
pansion. In the calculations shown above, the o-M method i s  used only for the double­
Gauss approximations, because the preliminary calculations showed the result that 
although the o-M method works in the double-Gauss approximations, it is not effective 
in principle in the single-Gauss approximations. It was also shown by the same cal­
culation that the superiority of the double-Gauss 4-stream approximation to the single­
Gauss 4-stream approximation in  some quantities, as discussed in the previous sec­
tion, is attributable to the use of o-M method . 

In conclusion, an explanation of the discrete ordinate method has been presented 
and the accuracy of this method has been discussed for electrons with incident energies 
below 20 keV. Each type of two versions of the discrete ordinate method (single­
Gauss and double-Gauss) is based on its own assumptions with regard to the phase 
function and the angular distribution of electron intensity. The double-Gauss 4-
stream approximation is shown to be a good approximation with the precision within 
a few percent and is a little more accurate than the single-Gauss 4-stream approxima­
tion. On the other hand, any type of the two-stream approximations has the errors 
amounting to or exceeding 20-30% in  some cases. 
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