Seasonal variations of the partial pressure of CO₂ in surface water and quantitative assessment of its drivers in the Pacific Sector of the Arctic Ocean from winter to summer

Manami Tozawa¹, Daiki Nomura^{1,2,3}, Mariko Hatta⁴, Amane Fujiwara⁴, Sayaka Yasunaka⁵, Akihiko Murata⁴

¹Faculty/Graduate School of Fisheries Sciences, Hokkaido University,
²Field Science Center for Northern Biosphere, Hokkaido University,
³Arctic Research Center, Hokkaido University,
⁴Japan Agency for Marine-Earth Science and Technology (JAMSTEC),
⁵Graduate School of Science, Tohoku University

To comprehend the variations in the partial pressure of CO₂ (pCO₂) in the surface water in the Arctic Ocean and to identify its drivers, we conducted biogeochemical observation in the Pacific Sector from September to October 2021. The pCO₂ in surface water was undersaturated with respect to the atmosphere, indicating a CO₂ sink for the atmosphere in the study area. We estimated the surface water pCO₂ under sea ice in winter to be 363 ± 14 µatm based on the water temperature, dissolved inorganic carbon, and total alkalinity at the winter water layer (175–220 m). Then, we also evaluated the variations of pCO₂ (δ pCO₂) by temperature, freshwater inflow, and biological activity to assess the drivers determining pCO₂ quantitatively from winter to summer. In the area south of 70°N, although a dramatical increase of the sea surface temperature from winter toward summer had the potential to increase pCO₂ and then should have led to the CO₂ supersaturation with respect to the atmosphere, the freshwater inflow and the biological activity reduced the pCO₂, and led the CO₂ undersaturation with respect to the atmosphere due to a slight seasonal variation in sea surface temperature and significant freshwater inflow reducing pCO₂ in surface water as the result of the dilution effect. Furthermore, the freshwater origins (sea ice meltwater and snow meltwater) were identified using stable oxygen isotopic ratio and salinity, and it suggested that the impact on pCO₂ would vary depending on the freshwater source.

Figure 1. (a) Spatial distribution of pCO₂ in summer, (b) δpCO₂ by temperature, (c) δpCO₂ by freshwater inflow, and (d) δpCO₂ by biological activity