Seasonarity of turbulent energy dissipation rates over Syowa Station, Antarctic

Masashi Kohma¹, and Kaoru Sato¹,

¹Department of Earth and Planetary Science, The University of Tokyo

The turbulent energy dissipation rate (ε) is one of the fundamental physical quantities for atmospheric turbulence. We have investigated the seasonality of ε and the characteristics of ε in the stratospheric polar vortex margins using ε estimated by a VHF radar at Syowa Station, Antarctica (PANSY radar; Sato et al., 2014). In this study, we focus on the seasonality of ε in the upper troposphere and lower stratosphere using five years of observation data, and discuss the factors that cause the ε seasonality.

As also shown in Kohma et al. (2019), ε increases from winter to spring in the lower stratosphere. We have shown in previous analyses that this is likely due to a seasonal change in polar vortex and gravity wave activity. It is interesting to note that the seasonal variation of ε just above the tropopause (z=9~11 km) has a maximum value in February. The frequency histogram of ε in this altitude region shows that the right tail of the histogram of ε is extended in February compared to other months. In other words, strong turbulence events frequently occur in February, resulting in an increase in the monthly mean value of ε . We will discuss the background winds and gradient Richardson number during the strong turbulence events.

Fig. 1: Monthly mean ε (color) and zonal wind (contours) over Syowa Station as a function of height.