

The IGSN Global Sample Number -A PID for Physical Objects

Jens Klump, Kerstin Lehnert, Sarah Ramdeen, Lesley Wyborn | 12 October 2021

Australia's National Science Agency

Samples are at the Heart of Research

What are IGSN Global Sample Numbers?

- IGSN are persistent, globally unique, web resolvable identifiers for physical samples & specimens.
- IGSN is domain-agnostic.
 Samples can be any material from anywhere.

Globally Unique

One sample, many names

One name, many samples

Persistent

- URLs change over time ("link rot").
- A persistent identifier will always resolve to a landing page, even when the URL changes ... or when URL will be superseded by a future technology.
- Examples: DOI, Handle, ORCID

General Identifiers

Program:	ICDP
Expedition:	ICDP 5054
Туре:	Hole
Name:	5054_1_A
IGSN:	ICDP5054EEW1001
Parent IGSN:	N/A
Release Date:	2017-4-1
Sampling Location	
Latitude:	63.4063
Longitude:	13.203057
Coordinate System:	WGS84
Elevation:	522
Final Depth:	-1980.8
Location Type:	N/A
Location Name:	Are, Jaemtlands laen, Sweden
Location Description:	COSC-1 is located in the vicinity of the abandoned Froea mine
Country:	Sweden
Province:	Jaemtlands laen
County:	N/A
City:	Are
Geology	
Material:	Rock
Rock Classification:	metamorphic rocks
From Corrected Depth:	102.7
To Corrected Depth:	2502.8
Depth Reference:	meter below ground level
Geological Age:	mid-paleozoic
Geological Unit:	N/A
Drilling	
Drilling Method:	Coring>RockCorer wireline diamond coring, HQ and NQ bit size
Operator:	Lund University, Engineering Geology Larsson Drilling Consulting AB
Funding Agency:	Swedish Research Council (Vetenskapsrådet)
Total Length:	2400 1m

Impressum

GFZ GERMAN RESEARCH CENTRE FOR GEOSCIENCES

The Sample Family shows a sub-sampling graph. Select entries to navigate samples. Core-Samples are issued to scientists on request. The naming convention for a Core-Sample is: Expedition_Site_Hole_Core_Section,from-to(cm). Hole, Core, and Core-Section are following the same schema respectively.

Drilling Start/End: 2013-9-5 / 2014-8-26 * Latitude: 63.40630 * Longitude: 13.20306 * Are, Jaemtlands laen, Sweden

Publications & Datasets

Lorenz, H., Rosberg, J.-E., Juhlin, C., Bjelm, L., Almqvist, B. S. G., Berthet, T., ... Tsang, C.-F. (2015) drilling of a subduction-related allochthon il Caledonide orogen of Scandinavia. Sci. Dn doi:10.5194/sci-19-1-2015

Web Resolvable

URL of this page: https://rockstore.csiro.au/arrc/#/browsesamples/CSRWA275

Linking Samples, Data, and Literature

Spectrum (DOI)

Specimen (IGSN)

IGSN can link to other IGSN, to DOI (data, literature), or other PID. IGSN is a "related identifier" in DataCite metadata.

Publication (DOI)

Tracking Samples

- CSIRO used IGSN as sample identifiers in a geochemical field campaign in the Nullarbor Desert.
- IGSN sample labels were pre-printed with QR codes.
- The QR codes were read into the FAIMS field data app.
- The streamlined process improved the efficiency of sample handling by 100%.

Scaling to Billions of Samples

- Historically IGSN grew out of the geological sciences but is now used for any kind of physical sample.
- Close to 10 million IGSN have been minted.
- IGSN might grow to 3 billion samples over the next ten years.
- How can we grow the system to accommodate this scale?

Is there a least common denominator?

- What is the least common denominator to make the description of this object ...
 - F Findable
 - R Reusable
- The description will depend on the intended use.
- Samples can come from anywhere in the universe, not only from Earth.

Technical Developments

- Let the machines do the heavy lifting.
- Persistent identifiers provide anchors to people, publications, data, code, samples, instruments, ...
- Metadata become machine readable and can be harvested by standard web technologies.
- Linked data is finally coming of age (if it's done at scale and not done manually).

Linked Data for Physical Samples

How Search Engines Work

Harvesting IGSN metadata in JSON-DL

- To be able to scale IGSN to billions of samples requires a shift to web technologies built to deal with such volumes.
- Search engine operators developed schema.org and sitemaps to enable web crawlers to efficiently harvest information from web resources.
- In future, metadata will be embedded in landing pages as JSON-LD.
- Crawlers find pages through sitemaps, and sitemaps of sitemaps.
- There are plenty of libraries around to deal with harvesting and parsing JSON-LD making implementation easier than OAI-PMH.
- JSON API will enable selective harvesting of metadata elements.

Linked data coming of age

APPLICATIONS MLAI

- JSON-LD provides a framework for encoding metadata in a semantic way.
- These metadata can be generated by machines, using PID as anchors in the real world.
- The relationships between objects and concepts can be portrayed as graphs.
- Machine learning can be applied to graph analysis.

Figure courtesy of Alex Whan, CSIRO Agriculture & Food

Why is graph learning important?

- Graphs can be analysed through algorithmic methods, e.g. pattern recognition, reasoning, etc.
- Availability of more training data led to better results in image analysis and natural language processing.
- Similar developments can be expected in graph-based learning.

New research capabilities

- Exposing metadata as graphs through web architectures enables new research:
 - How are my samples related?
 - How are my mineral samples tied to groundwater chemistry?
 - What are their interactions with the soil microbiome?

IGSN / DataCite Partnership

- IGSN and DataCite entered a partnership agreement.
- DataCite will take on the minting of IGSN through DataCite services.
- IGSN PIDs will become DataCite DOIs.
- IGSN minting will be open to all DataCite members.

Summary

- Physical samples are at the heart of many research disciplines.
- IGSN allows persistent identification of physical samples across institutional boundaries.
- Through linking IGSN with DOI of data and literature, physical samples are linked to scholarly communication and become part of the record of science.
- Linking samples to the research knowledge graph enables new insights by analysing samples, data and literature in context.
- From 2022 onward, IGSNs will become DataCite DOIs.

Thank you

CSIRO Mineral Resources Jens Klump Jens.klump@csiro.au

Lamont-Doherty Earth Observatory, Columbia University Kerstin Lehnert lehnert@ldeo.columbia.edu

Lamont-Doherty Earth Observatory, Columbia University Sarah Ramdeen sramdeen@ldeo.columbia.edu

Australian National University / NCI Lesley Wyborn lesley.wyborn@anu.edu.au

IGSN e.V http://www.igsn.org

Australia's National Science Agency