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Temporal evolutions of N+

2
 Meinel (1,2) band 

near 1.5.µm associated with aurora breakup 
and their effects on mesopause temperature 
estimations from OH Meinel (3,1) band
Takanori Nishiyama1,2* , Makoto Taguchi3, Hidehiko Suzuki4, Peter Dalin5, Yasunobu Ogawa1,2,6, 
Urban Brändström5 and Takeshi Sakanoi7

Abstract 

We have carried out ground-based NIRAS (Near-InfraRed Aurora and airglow Spectrograph) observations at Syowa 
station, Antarctic ( 69.0◦S , 39.6◦E ) and Kiruna ( 67.8◦N , 20.4◦E ), Sweden for continuous measurements of hydroxyl 
(OH) rotational temperatures and a precise evaluation of auroral contaminations to OH Meinel (3,1) band. A total of 
368-nights observations succeeded for 2 winter seasons, and 3 cases in which N+

2
 Meinel (1,2) band around 1.5µm 

was significant were identified. Focusing on two specific cases, detailed spectral characteristics with high temporal 
resolutions of 30 s are presented. Intensities of N+

2
 band were estimated to be 228 kR and 217 kR just at the moment 

of the aurora breakup and arc intensification during pseudo breakup, respectively. At a wavelength of P1(2) line 
( ∼ 1523 nm ), N+

2
 emissions were almost equal to or greater than the OH line intensity. On the other hand, at a wave-

length of P1(4) line ( ∼ 1542 nm ), the OH line was not seriously contaminated and still dominant to N+

2
 emissions. 

Furthermore, we evaluated N+

2
 (1,2) band effects on OH rotational temperature estimations quantitatively for the first 

time. Auroral contaminations from N+

2
 (1,2) band basically lead negative bias in OH rotational temperature estimated 

by line-pair-ratio method with P1(2) and P1(4) lines in OH (3,1) band. They possibly cause underestimations of OH 
rotational temperatures up to 40 K. In addition, N+

2
 (1,2) band contaminations were temporally limited to a moment 

around the aurora breakup. This is consistent with proceeding studies reporting that enhancements of N+

2
 (1,2) 

band were observed associated with International Brightness Coefficient 2–3 auroras. It is also suggested that the 
contaminations would be neglected in the polar cap and the sub-auroral zone, where strong aurora intensification 
is less observed. Further spectroscopic investigations at these wavelengths are needed especially for more precise 
evaluations of N+

2
 (1,2) band contaminations. For example, simultaneous 2-D imaging observation and spectroscopic 

measurement with high spectral resolutions for airglow in OH (3,1) band will make great advances in more robust 
temperature estimations in the auroral zone.

Keywords: Ground-based spectroscopic observations, OH airglow, Aurora, The Mesosphere and Lower 
Thermosphere, OH rotational temperature, Short wavelength infrared
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Introduction
The mesosphere and lower thermosphere (MLT), from 
80 to 120 km altitude in the terrestrial atmosphere, is 
affected not only by general wind circulation and atmos-
pheric waves with various scales but also solar radiation 
and energetic particle precipitations from the space. It 
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is important to understand the MLT thermal structure, 
dynamics, and compositions that are closely connected 
to the whole atmosphere system. However, the MLT is 
hardly accessible, and therefore a method of diagnostic is 
essentially limited to optical/radio remote sensing, except 
for direct but transit in-situ measurements by sounding 
rockets.

Hydroxyl (OH) vibration-rotation emission bands, 
which were discovered by Meinel (1950), is still glow-
ing its importance as a tracer of the dynamics and the 
long term trends of the MLT. OH airglow intensity and 
its rotational temperature have been extensively investi-
gated in the past over 60 years, and consequently they are 
known to have a variability such as 11-year solar cycle, 
annual, seasonal, 27-day (Pertsev and Perminov 2008; 
Shapiro et  al. 2012; von Savigny 2015), and planetary-
scale wave (Espy et al. 2003; French et al. 2011). It is also 
noted that short-lived OH enhancements due to solar 
energetic particle (Damiani et  al. 2008; Jackman et  al. 
2011) and sudden stratospheric warming (Damiani et al. 
2010) were reported by satellite-borne measurements.

A variety of OH Meinel bands have been observed for 
the estimation of OH rotational temperatures; (6,2) band 
(e.g. Pendleton et al. 2000; Sigernes et al. 2003) and (8,3) 
band (Phillips et  al. 2004) were generally used. In addi-
tion, a robust method to auroral contaminations using 
(8,4) band was presented (Suzuki et  al. 2009). OH air-
glow in Meinel (3,1) band around 1.5 μm is character-
ized as brighter emission lines than other OH bands and 
less affected by water vapor absorptions. OH rotational 
temperatures have been estimated from P-branch in 
OH (3,1) band by Fourier transform spectrometer and 
Michelson Interferometer (e.g. Dewan et al. 1992; Sivjee 
and Walterscheid 1994; Mulligan et  al. 1995; Espy et  al. 
2003; Azeem et al. 2007) since the end of 1980s. From the 
space, temperatures were retrieved from OH (3,1) band 
limb emissions with near-global coverage and tangen-
tial height steps of 3.3 km (von Savigny et al. 2004; von 
Savigny 2015). Recent advances in indium gallium arse-
nide (InGaAs) focal plane array allow to measure inten-
sity of OH (3,1) band with high temporal resolutions by 
1-D imaging spectrograph (Schmidt et al. 2013) and 2-D 
imager with narrow full width at half maximum (FWHM) 
optical filters, which is capable to “map” OH rotational 
temperature distributions (Pautet et al. 2018).

Aurora emissions in a wavelength of OH (3,1) band are 
assumed to be negligible or much weaker than those in 
visible subrange (Azeem et  al. 2007; Pautet et  al. 2014), 
meanwhile, their contribution was not discussed quan-
titatively so far. Spectroscopic surveys for auroral spec-
trum in near and short-wavelength infrared regions 
( ∼ 1.6μm) have already been done in the 1970s (e.g. 
Gattinger and Jones 1973; Jones and Gattinger 1976; 

Gattinger and Jones 1981; Espy et  al. 1987), and many 
auroral emissions were found such as N+

2
 , Meinel (1,2) 

band around 1.5 μm (Gattinger and Jones 1973). In this 
paper, detailed spectral characteristics in OH Meinel 
(3,1) band and N+

2
 Meinel band are presented based on 

ground-based observations of Near-InfraRed Aurora and 
airglow Spectrograph, hereafter NIRAS. We also quan-
titatively evaluate auroral contaminations to OH (3,1) 
band and discuss about their effects on OH rotational 
temperature estimations.

Observations
General description
NIRAS is a narrow field imaging spectrograph with a 
320 mm focal length and a medium spectral resolution. 
Figure 1 shows a photo of the NIRAS system in a labo-
ratory for sensitivity calibrations. Main scientific pur-
poses of the NIRAS are as follows: an updating spectral 
features and absolute intensities in near infrared-short 
wavelength infrared aurora (0.9–1.6 μm), a precise 
evaluation of auroral contaminations to OH Meinel 
(3,1) band, and continuous measurements of OH rota-
tional temperatures. The NIRAS has been installed at 
Syowa station, Antarctic ( 69.0◦S , 39.6◦E ) by 59th Japa-
nese Antarctic Research Expedition (JARE) in February 
2018. NIRAS observations at Syowa were carried out in 
an austral winter season, and spectral measurements 
for a total of 235 nights succeeded. After the operation 
at Syowa by JARE, the NIRAS was moved and installed 
again at an optical laboratory in the Swedish Institute 
of Space Physics (Institutet för rymdfysik, IRF), Kiruna 
( 67.8◦N , 20.4◦E ) in late August 2019. The NIRAS opera-
tion at Kiruna focused on OH (3,1) band measurements 
and monitoring of arctic mesopause temperatures. 
However, the operation was unfortunately stopped 

Fig. 1 A photo of the NIRAS system in a laboratory
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in mid-January 2020 due to a trouble in a detector. A 
history of the  NIRAS observations is summarized in 
Table 1. 

Instrument
The NIRAS mainly consists of a Czerny-Turner type 
spectrometer (HORIBA, iHR320), collecting optics, a 
detector and a control system. The spectrometer has an 
entrance slit, a shutter, two mirrors and diffractive grat-
ings (up to three) in a rotating turret. We mainly used 
two gratings with of groove density of 600 lines per mm 
(lpmm) and 150 lpmm, which correspond to spectral 
sampling of 0.11 nm/pixel and 0.50 nm/pixel, respec-
tively. The gratings can be switched remotely via soft-
ware. The collecting optics, mounted in front of a slit, 
are a gold coated off-axis parabolic mirror and a long-
pass filter for removal of secondary diffracted light in 
visible wavelength. The detector is 1-D InGaAs array 
(HORIBA, Symphony IGA) that has thermoelectric 
cooling system (about −50◦C ) and 1024 pixels with a 
pixel size of 25 μm × 250 μm. It has a sensitivity to light 
from 0.8 to 1.7 μm at a room temperature. Since clari-
fying absolute intensity of aurora emissions from 0.9 to 
1.6 μm is one of main subjects, the NIRAS sensitivity 
has been calibrated before transportation to Syowa. For 
the calibration, a 12-inch integrating half-sphere, a Kr 
lamp, and two different multi-channel spectrometers 
with Charge Coupled Device (CCD, 360–1100 nm) 
and InGaAs (900–1600 nm) were used. Continuum 
and spatially uniform light can be made by the half-
sphere and the lamp, and the NIRAS and the multi-
channel spectrometers, which are capable of measuring 
the absolute light intensity between 360 and 1600 nm, 
simultaneously measured the light from an open port of 
the half-sphere. Based on the calibration, we confirmed 
that the NIRAS with both of the two gratings had an 
enough sensitivity for airglow and aurora emissions 
from 0.9 to 1.6 μm. The detailed specifications of the 
NIRAS are presented in Table 2. The NIRAS was oper-
ated automatically when Solar Zenith Angle (SZA) is 
greater than 100◦ at Syowa and 96◦ at Kiruna, according 

to a provided schedule, and ran routinely regardless of 
moon phases and meteorological conditions.

Results
OH 3,1 band measurements and temperature estimations
Typical nightly mean spectrum obtained from NIRAS 
measurements on May 29 and May 6, 2018 are shown 
in Fig. 2; Fig. 2 a is a spectra with the 600-lpmm grating 
and a center wavelength of 1504 nm. Q- and P-branches 
in OH (3,1) band are from 1500 to 1555 nm in the spec-
tra. On the other hands, Fig.  2 b is a spectra with the 
150-lpmm grating and a center wavelength of 1371 nm. 
Q-branches in OH (6,3), (7,4), (8,5), (2,0), (3,1), and (4,2) 
bands and O2 ( 1� ) band are identified. Water vapor 
absorptions, which are significant from 1350 to 1450 nm 
in lower latitudes, seem to be not serious, although no 
emissions are found from 1350 to 1400 nm in the spec-
tra. It should be noted that data near the edge on a short 
wavelength side is not reliable due to low sensitivity of 
the NIRAS and water vapor absorption, and therefore 
not used for quantitative discussions.

Figure 3 is a summary plot for the NIRAS observations 
in austral winter 2018 that only shows nightly means 
of spectral measurements for OH (3,1) band. Results 
obtained by measurements with the 600-lpmm grat-
ing are only shown. Figure 3a is total exposure time for 
nightly mean OH (3,1) band intensities and temperature 
on each night. We only used good Signal-to-Noise Ratio 
(SNR) spectral data for calculating the nightly mean. Cri-
teria are as follows: SNR of P1(2) and P1(4) line intensi-
ties are greater than 1.3 and 1.0 before March 24, 2018 
because focus of the NIRAS was not fully adjusted yet. 
After focus adjustment on March 24, 2018, the criteria 
are changed to SNR of 2.0 and 1.6. Zero exposure time 
means either no good SNR data mainly due to meteoro-
logical conditions or running in different target modes. 
A dashed curve indicates amount of time when SZA is 
greater than 100 degrees on each night. Note that the 
time is multiplied by a factor of 5/6 because a cycle of 
measurement has one dark frame and five sky frames. As 
shown in Fig.  3a, continuous measurements with good 
SNR were done from the middle to the end of May 2018.

Figure  3b shows seasonal variability of nightly mean 
of P1(2), P1(3), and P1(4) line intensities in OH (3,1) 

Table 1 A summary of locations and period for NIRAS observations

Syowa Station, Antarctic IRF, Sweden

Location 69.0
◦
S , 39.6◦E (Magnetic latitude: 66.9◦S) 67.8

◦
N , 20.4◦E (Magnetic latitude: 65.2◦N)

Period March 7–November 2, 2018 (austral winter) August 28, 2019–January 10, 2020

# of observations 235 nights (168 nights, a 600-lpmm grating for OH (3,1) band) 133 nights (127 nights, a 600-lpmm grat-
ing for OH (3,1) band)
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band. Basically the intensity seems to have no clear 
periodical fluctuations, but significant enhancements 
can be seen a few times in May 2018. Figure  3c is 
nightly mean of OH rotational temperatures that was 
estimated based on line-pair-ratio method using a ratio 
between P1(2) and P1(4) line intensities (e.g. Meriwether 
1975; Pautet et  al. 2014). Rotational term values and 
Einstein coefficients are referred from Krassovsky et al. 
(1962) and Mies (1974), respectively. The nightly mean 
and 3-days smoothing are indicated by black diamonds 
and red lines, respectively. A blue curve is seasonal 
variations of temperature at 87-km altitude, which is 
widely accepted as a center of OH emission layer (Baker 
and Stair 1988), calculated by NRLMSISE-00 (Picone 
et  al. 2002). In addition, green triangles are 3-day 
smoothed temperature at geopotential height of 80 km 
obtained from Aura/Microwave Limb Sounder (MLS). 
Tangential points of all MLS data are within 69.0◦ ± 2◦S 
latitude and 39.6◦ ± 3.0◦E longitude. The estimated 
temperature by the NIRAS measurements of OH (3,1) 
band is well correlated to that by Aura/MLS measure-
ments. MLS temperature at geopotential height of 80 
km was the best among other geopotential heights. 
This is consistent with that a peak height of OH for 

vibrational number of 6, which should be 1km higher 
than OH layer for vibrational number of 3 observed by 
the  NIRAS (von Savigny et  al. 2012), ranges from 79 
to 82 km at 71◦S in austral winter (Grygalashvyly et al. 
2014).

The NIRAS successfully resolved nocturnal varia-
tions in OH (3,1) band as well as day-to-day variations. 
Figure 4 is a summary plot for NIRAS measurement on 
May 29, 2018. Figure  4a is SZA, and the  NIRAS obser-
vation ran about 16 hours when SZA was greater than 
100◦ on this night. In Fig. 4b, a black and a red lines show 
temporal variations in sensor temperature in every 30 s 
and in 3-min average, respectively. Sensor temperature, 
which is a proxy of data quality, was stable around −52◦C 
with standard deviations of 0.22◦C . Figure 4c is geomag-
netic field variation in H, D, Z-components observed 
by a fluxgate magnetometer and it shows that geomag-
netic activity was quiet throughout the night. Figure  4d 
shows dynamic spectrum with a wavelength coverage 
from 1451 to 1557 nm and a temporal resolution of 3 
min. Q- and P-branches in OH (3,1) band are clearly seen 
in a wavelength longer than 1500 nm. P1(2), P1(3), and 
P1(4) line intensities as a function of time are shown in 
Fig. 4e. Figure 4f is estimated OH rotational temperatures 

Table 2 Key properties of  the  NIRAS, both  the  spectrometer and  the  detector are manufactured by  HORIBA Scientific. 
Typical operational parameters are also shown

Specifications of the NIRAS

Spectrometer Czerny-Turner

Focal length 320 mm

F number 4.1

Slit width 0.10 mm (0–2 mm, electrically controlled)

Etendue 0.014–0.017 cm2*sr

Field-of-view 0.019
◦
× 0.19

◦

Detector InGaAs 1-D array

Pixel size 25 μm × 250 μm ( W× H)

Number of pixel 1024

Operation temperature −52.0± 0.2
◦
C , thermoelectric cooling

Grating 600 lpmm 150 lpmm

Blaze wavelength 1500 nm 1200 nm

Spectral sampling 0.11 nm/pixel 0.50 nm/pixel

Spectral resolution ≥ 0.42 nm ≥ 1.9 nm

Spectral range 119 nm 510 nm

Observation setting of the NIRAS

Observation condition Syowa: SZA ≥ 100
◦ , Kiruna: SZA ≥ 96

◦

Center of field-of-view Syowa: local magnetic zenith ( 63.4◦ ), Kiruna: local zenith

Temporal resolution 30 s (exposure 29 s)

Data acquisition cycle 3 min: 1 dark frame and 5 sky frames

Airglow target OH Meinel (3,1) band with the 600-lpmm grating

Aurora target N
+

2
 Meinel band and N2 1st positive band with the 150-lpmm grating
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in every 3 min (black diamonds) and 30-min smoothed 
temperatures (red line). Errors of estimated temperatures 
are mostly less than 4 K in this case. Figure 4g is same as 
f but 15-min averaged temperatures by the same error-
weighted scheme as in Schmidt et  al. (2013) (black dia-
monds) and 60-min smoothed temperatures (red line). 
Temperature variations with long-periods (longer than a 
few hours) can be identified as well as those with short-
periods (shorter than 1 h).

Auroral contamination to OH (3,1) band
We present two cases in which OH (3,1) band was con-
taminated by N+

2
 Meinel (1,2) aurora band. Figure 5 is a 

first case of NIRAS measurements with the 150-lpmm 
grating on May 6, 2018 and comparisons to observed 
aurora activity. Figure 5a is geomagnetic field variations 
in H, D, and Z components showing a rapid depletion 
( ∼ −900 nT ) in H component at 22:10 UT. Figure  5b 
and c are keograms along magnetic latitudinal direc-
tions obtained from co-located all-sky aurora imagers for 
N

+

2
 427.8 nm and O 557.7 nm, respectively. These indi-

cate that aurora breakup took place at the same time as 
the H-component depletion. Figure  5d is aurora inten-
sity of O 557.7 nm at magnetic zenith as a function of 

time. The intensity of O 557.7 nm reached ∼ 200 kR ( N+

2
 

427.8 nm ∼ 100 kR , not shown), which indicated strong 
aurora intensification. Figure  5e is dynamic spectrum 
from 1114 to 1624 nm obtained by the NIRAS. At the 
beginning of the observation, a strong enhancement of 
O2 ( 1� ) band at 1270-1280 nm in twilight conditions was 
observed. Q-branches in OH (3,1) and (4,2) bands around 
1500 nm and 1580 nm can be identified throughout the 
night. At the moment of the aurora breakup, N2 1st posi-
tive (0,1) band was noticeable at 1220-1240 nm. At the 
same time faint emissions from 1450 to 1540 nm, corre-
sponding to N+

2
 Meinel (0,1) and (1,2) bands, were over-

lapped with OH (2,0) and (3,1) bands. P1(2), P1(3), and P1
(4) line intensities in OH (3,1) band as a function of time 
are shown in Fig. 5f. Focusing on a period at the aurora 
breakup, the intensity in P1(2) and P1(3) lines showed 
spike-like increases up to 10 kR. On the other hand, no 
clear change was found in P1(4) line. More detailed spec-
tral features are shown and discussed later. 

A second case was NIRAS observation at IRF, Kiruna 
on September 21, 2019, which is summarized in Fig.  6. 
Figure  6a is local K-index based on geomagnetic field 
observations at Kiruna. The K-index was 5 from 2100 
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to 2400 UT indicating geomagnetically active condition. 
Figure 6b and c are keograms along geomagnetic north–
south and east–west directions, respectively, and the both 
are from Watec monochromatic imager for wavelength 
of 557.7 nm (Ogawa et al. 2020). The keograms indicate 
that isolated east–west aligned arc localized near zenith 
was gradually intensified and another arc in a higher 
latitude was moving equatorward until 2150 UT. Finally, 
the two arc were merged near zenith and further intensi-
fied at 2154 UT. However, this activity neither expanded 
over the whole sky nor reached full breakup later, and 
therefore it seems a pseudo breakup typically seen in 
pre-midnight (Partamies et al. 2003). Aurora intensity at 
a geographic zenith in Fig.  6d also shows drastic varia-
tions after 2130 UT and a rapid enhancement near 2150 
UT. We cannot follow the intensity variations between 

2150 and 2200 UT due to CCD saturations, however, it 
suggests that the intensified arc was stable for about 10 
min. All-sky aurora image data at Sodankylä Geophysical 
Observatory ( 67.4◦N , 26.4◦E , Magnetic latitude: 64.1◦ ), 
Finland also demonstrates the intensification of aurora 
arc and pseudo breakup at that moment (See Additional 
file  1:  Video S1  in more detail). The  NIRAS was likely 
to observe the same intensified arc as that observed at 
wavelength of 557.7 nm. In fact, strong auroral emissions 
in N2 1st positive (0,1) band, N+

2
 Meinel (0,1) and (1,2) 

bands are clearly seen from 2152 to 2155 UT in dynamic 
spectrum of Fig. 6e. Figure 6f is intensity of P1(2), P1(3), 
and P1(4) lines in OH (3,1) band as a function of time. It 
should be noted that increases in the intensity caused by 
N

+

2
 auroral contaminations are obvious at each line.

Detailed spectral analysis
Next, we present more detailed analysis to observed 
spectrum in the two cases. Figure  7 shows observed 
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spectrum in a wavelength range from 1400 to 1600 nm; 
black lines are nightly mean spectrum, and therefore 
OH airglow contributions to the spectrum are thought 
to be dominant. On the other hand, red and blue lines 
are nominal aurora spectrum that were obtained from 
subtracting the nightly mean from the observed spec-
trum at active aurora periods (e.g. Gattinger and Jones 
1973; Espy et  al. 1987). Time resolutions of those spec-
trum are 3 min (1 cycle, red) and 30 s (1 sky frame, blue), 
respectively. This analysis assumes that the OH spectrum 
at the time of the auroral breakups were the  same as 
the nightly mean spectrum. However, the OH emission 
intensity should vary during nights. Actually, intensity in 
P1(2) and P1(4) lines in OH (3,1) band varied with ampli-
tudes of about 10–20 kR in the two nights as shown in 
Figs. 5f and 6f. We have checked hourly mean OH (3,1) 
band spectrum just before the auroral intensification in 
the two events. Spectral intensity differences between 
the nightly means and the hourly means are less than 
2 kR/nm, and they typically range from 0.3 to 0.5 kR/
nm in 1510–1550 nm. This suggests that these differ-
ences are thought to be insignificant to spectral shapes 

of N+

2
 (1,2) Meinel band leading to auroral contamina-

tions in OH (3,1) band in the presented cases. Figure 7a 
are nightly mean spectra and nominal aurora spectrum 
with different time windows (from 2210 to 2213 UT and 
from 2211:00 to 2211:30 UT) on May 6, 2018. They dem-
onstrate that OH (3,1) band, mainly P2(2), P1(2), P2(3), P1
(3), P2(4), and P1(4), was spectrally overlapped with N+

2
 

(1,2) band. Intensity of the band, which is integrated in a 
wavelength from 1508 to 1540 nm, was 79.5 kR in 3-min 
average (2.5-min exposures). In 30-s resolution data, the 
intensity was estimated to be 228 kR just at the moment 
of the aurora breakup, which causes severe contamina-
tions to OH (3,1) band and subsequently leads signifi-
cant errors of OH rotational temperatures. In particular, 
intensity of P1(2) and P1(3) lines were almost the same or 
less than that of N+

2
 (1,2) band.

Figure  7b is the same plot as Fig.  7a but obtained on 
September 21, 2019. Nominal aurora spectrum indicated 
by red and blue lines are corresponding to time windows 
from 2152 to 2155 UT and from 2154:30 to 2155:00 UT, 
respectively. In a comparison to the previous case, a spec-
tral shape of N+

2
 (1,2) band seems to be not well-defined. 

This is partly because focus adjustment was not com-
pletely done. The estimated intensities in 3 min and 30 
s resolutions were 160 kR and 217 kR, respectively. The 
two intensities in different time resolutions are not so dif-
ferent, which suggests that the aurora arc did not change 
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Fig. 6 NIRAS measurements with the 150-lpmm grating at IRF, Kiruna 
on September 21, 2019. a Local K-index obtained from geomagnetic 
field observations at Kiruna. b and c are keograms along 
geomagnetic north–south and east–west directions, respectively. 
d Auroral intensity at a geographic zenith as a function of time e 
Dynamic spectrum from 1114 to 1624 nm obtained by the NIRAS. f 
P1(2), P1(3), and P1(4) line intensities in OH (3,1) band as a function of 
time
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b
Fig. 7 Spectrum in a wavelength range from 1400 to 1600 nm 
obtained a at Syowa station, on May 6, 2018 and b at IRF on 
September 21, 2019. A black solid line is nightly mean spectrum, 
and therefore OH airglow emissions are thought to be dominant. 
Red and blue lines are spectrum observed at aurora breakup with 
time resolutions of 3 min (2210:00 UT on May 6, 2018 and 2152:00 
UT on September 21, 2019) and 30 s (2211:00 UT on May 6, 2018 and 
2154:30 UT on September 21, 2019), respectively
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spatially and temporally for a few minutes. N+

2
 auroral 

contaminations to OH (3,1) band were also not negligible 
in this case.

We made further analysis to evaluate quantitatively N+

2
 

aurora effects on OH rotational temperature measure-
ments. Figure 8 shows summary plots of the analysis for 
the spectral data observed (a) at Syowa station, on May 
6, 2018 and (b) at Kiruna on September 21, 2019. Top 
plots in Fig. 8 show the nightly mean of observed spec-
trum (black) and artificial spectrum (red) that are cre-
ated from convolutions of numerically simulated OH 
(3,1) band spectrum ( P1(2), P1(3), P1(4), P2(2), P2(3), and 
P2(4)) and NIRAS instrumental functions. Temperatures 
estimated from the nightly mean were used for the spec-
trum calculations. Although FWHMs of the NIRAS were 
different between Syowa and Kiruna, the theoretically 
reproduced spectrum of OH (3,1) band were well agreed 
to the both observed ones. In middle plots of Fig. 8 red 
and blue lines are the reproduced OH airglow spectrum 

and the observed N+

2
 (1,2) aurora spectrum with 30-s res-

olutions that were already shown in Fig.  7, respectively. 
Black lines are synthetic spectrum that were obtained by 
the OH airglow spectrum plus the N+

2
 aurora spectrum. 

Peaks corresponding to P1(2), P1(3), and P1(4) lines in OH 
(3,1) band were still seen in the synthetic spectrum. But 
P2(2), P2(3), and P2(4) lines were difficult to be identified. 
Bottom plots in Fig. 8 show a ratio between OH airglow 
intensity and total intensity (OH airglow and N+

2
 (1,2)) as 

a function of wavelength. If the ratio is close to zero, N+

2
 

auroral contaminations are dominant, and therefore it is 
difficult to assume pure OH airglow spectrum anymore. 
It should be noted that N+

2
 aurora contributions were not 

uniformly distributed in OH (3,1) band in the both cases; 
the aurora contributions around P1(2) lines in OH (3,1) 
band were large, on the other hand those around P1(4) 
lines in OH (3,1) band were relatively small. This depend-
ence on wavelength is expected to lead negative bias in 
estimated temperature, because a volume emission rate 

a b
Fig. 8 Summary plots for evaluating N+

2
 Meinel (1,2) auroral contaminations to OH (3,1) band measurements based on spectral data a at Syowa 

station, on May 6, 2018 and b at Kiruna on September 21, 2019. (Top) The nightly mean spectrum (black) and artificial spectrum (red) that are 
created from convolutions of OH (3,1) band spectrum ( P1(2), P1(3), P1(4), P2(2), P2(3), and P2(4)) and instrumental functions. (Middle) Red and blue lines 
are the artificial OH airglow spectrum and the observed N+

2
 Meinel (1,2) aurora spectrum, respectively. Synthetic spectrum are shown by black lines. 

(Bottom) Ratio between OH airglow intensity and total intensity (OH airglow and N+

2
 Meinel (1,2)) as a function of wavelength
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of P1(2) line in OH (3,1) band becomes larger at lower 
temperature due to its negative rotational term values 
(Krassovsky et al. 1962).

Table  3 summarizes observed spectral character-
istics about OH (3,1) and N+

2
 (1,2) bands in the pre-

sented events. As already mentioned in the text, aurora 
morphology in the events were different; the NIRAS 
observed the spectrum associated with aurora breakup 
and isolated arc intensification. In addition, FWHM 
of the NIRAS at Kiruna was by 0.8-nm broader corre-
sponding to spectral band of one pixel. In Table 3, we 
show the intensity of N+

2
 (2,1) band that is integrated 

for specific wavelength ranges corresponding to P1(2) 
and P1(4) lines in OH (3,1) band with the FWHMs. For 
P1(2) line, intensity ratios between N+

2
 (1,2) and OH 

(3,1) were 1.4 and 1.1 at Syowa and Kiruna, respec-
tively, and therefore N+

2
 emissions were almost equal 

to or greater than OH emissions at this wavelength. For 
P1(4) line, they were 0.75 and 0.67, which means that 
OH emissions were contaminated from N+

2
 emissions 

but still dominant. If we do not take into account these 
auroral contaminations, OH rotational temperatures in 
the two cases are estimated to be 178.8 K and 172.0 K, 
respectively. Since temperatures based on the nightly 
mean are 215.8 K and 210.9 K, auroral contaminations 
from N+

2
 (1,2) band possibly cause underestimations of 

OH rotational temperatures up to 40 K.
We found another case that was associated with 

aurora breakup taking place at Syowa on March 23, 
2018. This case was similar to that at Syowa on May 6, 
2018, but a depletion of H-component for the breakup 
( ∼ −600 nT ) was a little bit smaller than on May 6. 
Observed aurora emission in N+

2
 (1,2) band was also 

weaker and its spectral structure was unclear without 

no well-defined peaks. OH (3,1) band intensity was 2-5 
times stronger than N+

2
 (1,2) band around wavelengths 

of P1(2) and P1(4) lines. As a result, negative bias in OH 
rotational temperature can be smaller and estimated 
about 8 K.

Discussion and conclusions
We found only three cases, in which aurora emissions in 
N

+

2
 (1,2) band were significant in the NIRAS data, from 

a total of 368-nights observations at Syowa and Kiruna. 
Each maximum of K-index of the three were 5 or 6, and 
therefore all cases took place during geomagnetically 
disturbed but not severe conditions. Among the three, 
spectral characteristics of N+

2
 (1,2) band were totally dif-

ferent in their intensities and spectral shapes. The two 
presented cases revealed that N+

2
 (1,2) band was defi-

nitely a source of contaminations to OH (3,1) band meas-
urements and cannot be neglected. Furthermore, this 
contamination has potential to lead underestimations of 
OH rotational temperature. Due to small number of sam-
ples we cannot make a further analysis and discuss about 
spectral variability of N+

2
 (1,2) band, but it must be taken 

into account that auroral contaminations from this band 
and their effects on OH (3,1) band measurements poten-
tially change case by case. Dominant generation process 
of N+

2
 (1,2) is thought to be direct electron impact on N2 

(Gattinger and Jones 1973), and it is also suggested that 
O

+(2D) - N2 charge transfer process contributes to pro-
ductions of N+

2
 as auroral source (Omholt 1957). Aurora 

height significantly affects these processes (Espy et  al. 
1987), and therefore further observations, for example 
coordinated with incoherent scatter radars, are needed to 
clarify temporal variability of N2 (1,2) band depending on 
aurora height.

Table 3 A summary of  spectral characteristics of  OH (3,1) and  N+

2
 (1,2) bands for  the  two aurora events observed 

by the NIRAS

Event May 6, 2018 @ Syowa September 21, 2019 @ Kiruna

Aurora morphology Aurora breakup Isolated aurora arc intensification

NIRAS FWHM 2.5 nm 3.3 nm

OH temperature (nightly mean) 215.8 K 210.9 K

Wavelength: P1(2), OH (3,1) band 1521.2–1525.7 nm 1520.8–1526.3 nm

Intensity of OH (3,1) band 24.6 kR 37.1 kR

Intensity of N+

2
 (1,2) band 35.5 kR 41.8 kR

Ratio N+

2
 (1,2) / OH (3,1) 1.4 1.1

Wavelength: P1(4), OH (3,1) band 1540.1–1544.6 nm 1540.7–1545.2 nm

Intensity of OH (3,1) band 21.2 kR 27.3 kR

Intensity of N+

2
 (1,2) band 15.9 kR 18.5 kR

Ratio N+

2
 (1,2) / OH (3,1) 0.75 0.67

Contaminated OH temperature 178.8 K 172.0 K
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The presented three cases suggest that enhancements 
of N+

2
 (1,2) band intensity are closely related to the aurora 

breakup or the aurora arc intensification. In proceeding 
studies, N+

2
 (1,2) band was observed with IBC 2-3 auroras 

(Gattinger and Jones 1973, 1981), and that is consistent 
with our studies. Since Syowa and Kiruna are located in 
so-called auroral zones, it is difficult to eliminate the con-
taminations due to aurora intensification even at a wave-
length near 1.5 µm . But, meanwhile, any enhancements 
of N+

2
 (1,2) band related to aurora arc in pre-onset con-

ditions and active diffuse/pulsating aurora after breakups 
were not identified by our observations. Thus, N+

2
 (1,2) 

band contaminations would be temporally limited to a 
moment around aurora breakup. Since aurora intensity is 
highly variable in time and basically smoothed out with 
low temporal resolutions or longer integration time as 
shown in Fig. 7a, it is noted that OH measurements with 
high temporal resolutions would suffer from the auroral 
contaminations seriously. On the other hand, the con-
taminations are expected to make minor contributions 
in the polar cap and the sub-auroral zone, where strong 
aurora intensification related to breakup is less observed 
directly (Azeem et al. 2007).

The NIRAS mostly ran with the 600-lpmm grat-
ing (FWHM: 0.63 nm) and a target of OH (3,1) band. 
It amounts to 295 (168, Syowa and 127, Kiruna) nights, 
corresponding to 80% of total observations. However, 
no aurora emissions were identified in the high spec-
tral resolution data so far, while the NIRAS observation 
in this setting has been implemented for 88 (56, Syowa 
and 32, Kiruna) geomagnetically disturbed nights (30%) 
that are defined as with a maximum K index larger than 
5. On the other hand, the NIRAS ran with the 150-lpmm 
grating for only 10 nights (8, Syowa and 2, Kiruna), and 
5 nights of them were regarded as geomagnetically dis-
turbed nights. We must consider a possibility that the 
NIRAS missed temporal and spatial variations of aurora 
for the other 90 geomagnetically disturbed nights due to 
its narrow FOV.

One interesting thing is that N+

2
 (1,2) band intensifi-

cation was  only found by NIRAS observations with the 
150-lpmm grating. The NIRAS sensitivity has no much 
differences between the two modes; each sensitivity for 
photons at 1.5µm are almost the same. FWHMs of 600- 
and 150-lpmm are 0.63 nm and 2.5 or 3.3 nm, respec-
tively. Narrow FWHM will allow us to resolve spectral 
shapes of N+

2
 (1,2) band more clearly, and therefore the 

difference of FWHMs cannot be the reason why no 
aurora emissions were identified around 1.5 µm with 
the 600-lpmm grating. Further spectroscopic investiga-
tions at this wavelength are needed especially for more 
precise evaluations of N+

2
 (1,2) band contaminations, 

since a highly resolved spectral data helps us to avoid 

the auroral contaminations to OH (3,1) band. Based on 
our results, it can be concluded that spectral resolutions 
of a few nm FWHM are  difficult to avoid the auroral 
contaminations. But we should also note that our cal-
culations of temperature estimation errors ( ∼ 40K ) are 
applicable to OH measurements with a few nm spec-
tral resolutions. FWHM less than 1 nm will make better 
and robust temperature estimations in spite of N+

2
 (1,2) 

band contaminations. Moreover, a wider field-of-view is 
preferable for getting more chances to coincident detec-
tions of aurora and airglow emissions. In the next step, 
simultaneous 2-D imaging observation and spectroscopic 
measurement with high spectral resolution for airglow in 
OH (3,1) band will make great advances in more precise 
evaluations of auroral N+

2
 (1,2) contaminations and sub-

sequent robust temperature estimations in the auroral 
zone.

We presented detailed spectral characteristics of short 
wavelength infrared aurora and airglow around 1.5µm 
by the  NIRAS measurements with high temporal reso-
lutions of 30 s based on the two specific cases. Further-
more, we evaluated N+

2
 (1,2) band effects on OH (3,1) 

band measurements quantitatively for the first time. This 
study can be summarized as follows. 

(1) We have carried out NIRAS observations at Syowa 
(from March 7, 2018 to November 2, 2018) and 
Kiruna (from August 28, 2019 to January 10, 2020). 
A total of 368-nights observations succeeded for 
two seasons.

(2) Only three cases in which aurora emissions in N+

2
 

(1,2) band were significant in the NIRAS data were 
found. K-index of the three were 5 or 6, and there-
fore all cases took place during geomagnetically dis-
turbed but not severe conditions.

(3) The two specific cases demonstrated that OH (3,1) 
band, mainly P2(2), P1(2), P2(3), P1(3), P2(4), and P1
(4), was spectrally overlapped with N+

2
 (1,2) band. 

Intensities of N+

2
 band were estimated to be 228 kR 

and 217 kR in 30-s resolutions just at the moment 
of the aurora breakup and the arc intensification 
during the pseudo breakup, respectively.

(4) At a wavelength of P1(2) line ( ∼ 1523 nm), N+

2
 

emissions were almost equal to or greater than the 
OH line intensity. On the other hand, at a wave-
length of P1(4) line ( ∼ 1542 nm), the OH line was 
not seriously contaminated and still dominant to 
N

+

2
 emissions. This basically leads to negative bias 

in estimated OH rotational temperature by line-
pair-ratio method with P1(2) and P1(4) lines. They 
possibly cause underestimations of OH rotational 
temperatures up to 40 K.
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(5) N+

2
 (1,2) band contaminations were temporally lim-

ited to a moment around the aurora breakup. This 
result suggests that the contaminations would be 
neglected in the polar cap and the sub-auroral zone, 
where strong aurora intensification comparable to 
IBC 2–3 is less observed.

(6) Further spectroscopic investigations at this wave-
length are needed. For example, simultaneous 2-D 
imaging observation and spectroscopic measure-
ment with high spectral resolution for airglow in 
OH (3,1) band will make great advances in more 
precise evaluations of auroral N+

2
 (1,2) contamina-

tions and consequently robust temperature estima-
tions in the auroral zone.
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The online version contains supplementary material available at https ://doi.
org/10.1186/s4062 3-021-01360 -0.

Additional file 1: Video S1. A aurora movie at Sodankylä Geophysical 
Observatory for a night on September 21, 2019. This movie is from images 
captured by an intensified CCD all-sky camera with 512 × 512 pixels and 
the image intensifier. The single frame exposure is 600 milliseconds for a 
wavelength of 557.7 nm and it repeated every 20 s. In the movie, strong 
intensification of aurora arc can be seen at 2154:20 UT, which are probably 
the same as those observed at Kiruna.
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