## Fractionation of O<sub>2</sub>/N<sub>2</sub> and Ar/N<sub>2</sub> in polar ice cores during bubble formation, bubble-clathrate transition, and gas loss during storage from precise gas measurements of the Dome Fuji ice core, Antarctica

Ikumi Oyabu<sup>1</sup>, Kenji Kawamura<sup>1,2,3</sup>, Kyotaro Kitamura<sup>1</sup>, Shuji Fujita<sup>1,2</sup>, Tsutomu Uchida<sup>4</sup>, Jeffrey P. Severinghaus<sup>5</sup>, Jacob

Morgan<sup>5</sup>, Motohiro Hirabayashi<sup>1</sup>

<sup>1</sup> National Institute of Polar Research

<sup>2</sup> Department of Polar Science, The Graduate University of Advanced Studies (SOKENDAI)

<sup>3</sup> Japan Agency for Marine Science and Technology (JAMSTEC)

<sup>4</sup> Division of Applied Physics, Faculty of Engineering, Hokkaido University

<sup>5</sup> Scripps Institution of Oceanography, University of California San Diego

Air trapped in polar ice sheets provides various information on past climatic and atmospheric changes. The major atmospheric gases (N<sub>2</sub>, O<sub>2</sub> and Ar) trapped in the ice sheet originate in the past atmosphere. However,  $O_2/N_2$  and  $Ar/N_2$  in the ice sheets, after correcting them for gravitational settling in firn, are significantly lower than the original atmospheric ratios due to selective loss of smaller molecules during the bubble formation process (e.g., Severinghaus and Battle, 2006), which in turn is controlled by the variation of local summer insolation through its effects on snow metamorphism (Bender, 2002; Fujita et al., 2009). The  $O_2/N_2$  records have been used as the local insolation proxy for precise orbital dating of the Dome Fuji and Vostok deep ice cores (Kawamura et al., 2007; Suwa and Bender, 2008). The fractionations of  $O_2/N_2$  and  $Ar/N_2$  also occur during bubble-clathrate hydrate transition in the bubble-clathrate hydrate transition zone (BCTZ) (e.g., Ikeda-Fukazawa et al., 2001), and during coring and storage of ice cores (artifact gas-loss) (Bender et al., 1995; Severinghaus et al., 2009). Better understanding of the fractionation of  $O_2/N_2$  and  $Ar/N_2$  under the various processes is important for the deep-ice-core dating and eventual reconstruction of the past atmospheric  $O_2$  concentration from ice cores.

In this work, we have been analyzing the first Dome Fuji core, drilled in the mid-1990s and kept at -50 °C, with a newly developed method to reconstruct the  $O_2/N_2$  and  $Ar/N_2$  ratios as originally recorded in the ice sheet. The average value of  $O_2/N_2$  and  $Ar/N_2$  are approximately -10 and -5 ‰, respectively. Our new  $O_2/N_2$  data agree well with the previous data (Kawamura et al., 2007) that was corrected for gas-loss during the core storage at -25 °C, suggesting successful reconstruction of  $O_2/N_2$  and  $Ar/N_2$  without post-coring gas-loss. The variations of  $O_2/N_2$  and  $Ar/N_2$  from the bubbly ice zone (112 – 450 m) and upper BCTZ (450 – 800 m) are similar to the local summer insolation curve. In the lower BCTZ (800 – 1200 m), short-term scatters becomes extremely large, possibly due to layered (vertically inhomogeneous) distribution of highly fractionated ( $O_2$ -rich) air hydrates. Below BCTZ (> 1200 m), the short-term scatters gradually decrease toward deeper depths, and the similarities of  $O_2/N_2$  and  $Ar/N_2$  variations with the summer insolation curve is re-established. In the presentation, we will discuss gas fractionations associated with the bubble-close off, transformation of bubbles to clathrate hydrates, and post-coring gas loss.

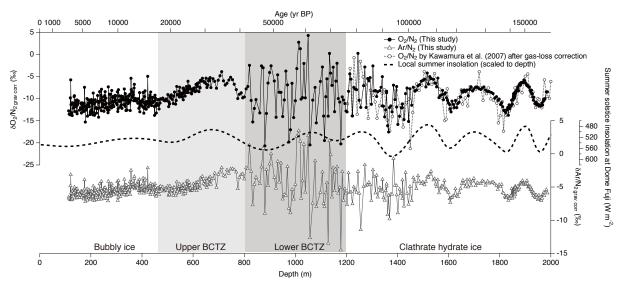



Figure:  $O_2/N_2$  and  $Ar/N_2$  data analyzed in this study, together with the previous  $O_2/N_2$  data by Kawamura et al. (2007) and local summer insolation curve scaled to depth.

References: Bender, M. et al., *Geophys. Res.*, 1995., Bender, M. L., *Earth Planet. Sci. Lett.*, 2002.; Fujita, S. et al., *J. Geophys. Res.*, 2009.; Ikeda-Fukazawa, T. et al., *J. Geophys. Res.*, 2001.; Kawamura, K. et al., *Nature*, 2007.; Severinghaus, J. P., & Battle, M. O., *Earth Planet. Sci. Lett.*, 2006.; Severinghaus, J. P. et al., *Science*, 2009.; Suwa, M., & Bender, M. L., *Quat. Sci. Rev.*, 2008.