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Introduction: The N isotopic anomalies observed in primitive meteorites are likely to be originated from the nucleosynthetic 

processes in the stellar evolution. Alternatively, to explain the anomalies, processes such as self-shielding and low-temperature 

ion-molecule reactions inside the protoplanetary disk can be considered. These anomalies should be erased in post-accretionary 

processes such as thermal and aqueous alterations that occurred in the asteroids. In thermally and aqueously altered object, 

creation of a new N component, with distinct signature than the original, is expected. Ordinary chondrites (OC’s) offer a 

possibility for studying the composition obtained from the nebula and new component derived from the post-accretionary 

processed in the asteroids. OC’s are actually important candidates, possibly linking between the carbonaceous chondrites and 

the differentiated objects. In order to improve the understanding of the nitrogen isotopic evolution and constrain the N 

component, here the nitrogen signature of the ordinary chondrites is investigated. Also, how much extent, the original nebular 

N signature is retained and that carried forward, is need to examine.  

Experimental: Gas extraction has been carried out by stepwise heating. Nitrogen and noble gases have been analysed by 

standard procedures (most recently given in Mahajan et al., 2019), and the measurements were in the same aliquot. Noble gas 

composition was reported elsewhere (Bhandari et al., 2005, 2008; Dhingra et al., 2004; Ghosh et al., 2002), here, the nitrogen 

composition is presented.  

Nitrogen: The measured data of N in the ordinary chondrites is presented in Table 1 (‘-‘ in table 1 indicates that experiment 

not conducts at this temperature). The N concentration in the OC’s is span between 1.34 to 11.1 ppm, and is within the range 

of ordinary chondrites. The two aliquots of Kendrapara, A and B are from different locations of the main mass (Dhingra et al., 

2004). It is observed from measurements in the two aliquot that, there is variation of nitrogen composition in intra-meteorite. 

Interestingly, the two aliquots do not show heterogeneity in the noble gas systematics. 

 

 

Trapped Nitrogen: The trapped 15Nt is obtained by the subtracting cosmogenic N from the measured, adopting the 

systematics of Hashizume and Sugiura (1995). The estimated 15Nt is, -0.71  0.10 ‰, +1.72  0.24 ‰, +3.64  0.52 ‰, +0.91 

 0.14 ‰ and 15.01  2.14 ‰, in the chondrites, Ararki (L5), Bhawad (LL6), Sabrum (LL6), Kendrapara-A (H5) and 

Kendrapara-B (H5), respectively. These values of 15Nt are comparable to and extend the range values reported previously 

(Bonino et al., 2001; Hashizume and Sugiura, 1995; Mahajan et al., 2016, 2018; Mahajan, 2017, 2020a; Ray et al., 2017; 

Sugiura et al., 1998). The potential sources for N2 are SW, HL and Q-phase. The signature of trapped N in the ordinary 

chondrites studied here and reported in the literature is enriched in heavier isotope and differ than the solar wind (SW), HL and 

Q-phase. Can this observation be considered as an indicator of a common source for heavier N? The heavier 15Nt suggest any 

or combination of this: (1) the SW is not a main component in OC’s, (2) the meteoroids derived from inner regions of the 

parent body and were not exposed to SW, (3) carriers of anomalous N are easily destroyed by post-accretionary processes, (4) 

anomalous N phases are minor components, (5) gas from the Q-carrier is not present in OC’s. However, the (5) argument may 

not be true, since OC’s has noble gas signature similar to the Q-component. Therefore, the trapped 15Nt in OC’s can be 

explained by (i) a mixture of heavy N gas with Q-gas or (ii) the signature is derived due to loss of N in post-accretionary 

process occurred in the parent body or (iii) it was derived from the self-shielding in nebula. All these cases can be responsible 

as viable processes for derivation and/or modification of N in the OC’s.  

Table 1.  Nitrogen composition, T is temperature in oC. 

T Ararki (L5) Bhawad (LL6) Sabrum (LL6) Kendrapara-A (H5) Kendrapara-B (H5) 

N ppm 15N ‰ N ppm 15N ‰ N ppm 15N ‰ N ppm 15N ‰ N ppm 15N ‰ 

400 0.79 11.0  0.2 0.30 17.3  0.2 0.70 5.17  0.12 0.36 13.6  0.4 0.58 17.7  0.7 

800 0.28 14.8  0.8 - - - - - - - - 

1000 - - 1.10 17.0  0.1 - - 0.72 6.8  0.4 0.75 23.8  0.2 

1200 0.20 15.4  1.0 - - - - 0.06 17.9  0.5 0.13 15.1  0.4 

1600 0.25 11.4  1.5 0.28 43.0  0.2 - - 0.19 -0.7  1.0 0.29 23.5  0.4 

1700 - - - - 10.4 10.9  0.2 - - - - 

Total 1.52 12.3  0.6 1.67 21.4  0.1 11.1 10.6  0.2 1.34 8.1  0.5 1.75 21.1  0.4 



 

 

Correlation with noble gases: Trapped He and Ne are negligible in all the four OC’s. Only trapped Ar, Kr, Xe, are identified. 

Therefore, the carriers of noble gases mostly contain Ar, Kr, and Xe. By looking at the correlation between the elemental ratio 
14N/36Art and 15Nt, it is possible to understand nitrogen carriers in OC’s. Trapped noble gases in OC’s are mixture of HL and 

Q components. N composition of OC’s indicate a different trend, which cannot be explained by mixing of HL, Q or SW. The 

N/36Ar ratio in the bulk OC’s are distinct (Mahajan 2020b) than the SW, HL, and Q. Nitrogen seems to be governed by 

different processes than argon (i.e. noble gases), and in different phases.  

Conclusions: Trapped 15Nt signature in OC’s suggest that, they derived their nitrogen from different mechanisms, and not 

obtained solely from the reservoirs, SW, Q or HL. Nitrogen composition in OC’s could be derived from combination of 

progressions. Post-accretionary processes in asteroids such as thermal processing can be thought of controlling the final 

composition of N in them.  
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