Seasonal variations of ¹⁸O and ¹³C of CO₂ in the upper troposphere and lower stratosphere over Siberia

Yoichi Inai^{1,5}, Shotaro Chida¹, Shinji Morimoto¹, Shohei Murayama², Shuji Aoki¹, Takakiyo Nakazawa¹, Toshinobu Machida³,

Hidekazu Matsueda⁴, Yousuke Sawa⁵, Kazuhiro Tsuboi⁴, Keiichi Katsumata^{3,6}, Ryo Fujita^{1,4}

¹Graduate School of Science, Tohoku University, Japan

² National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8560, Japan

³National Institute for Environmental Studies, Japan

⁴Meteorological Research Institute, Japan

⁵Japan Meteorological Agency, Japan

⁶Takachiho Chemical Industrial Co., Ltd., Japan

Carbon and oxygen isotope ratios (δ^{13} C and δ^{18} O) of atmospheric CO₂ provide us useful information on an understanding of the global carbon cycle owing to their dependencies on sources or sinks. To reveal temporal and spatial variations of δ^{13} C and δ^{18} O of CO₂ in the upper troposphere/lower stratosphere (UT/LS) over Siberia, we analyzed air samples collected on board commercial airliners between France/Russia and Japan by the Comprehensive Observation Network for TRace gases by AlrLiner (CONTRAIL) project. The CONTRAIL project has also measured mixing ratios of several long-lived chemical species, including SF₆, using the same collected air samples. The CO₂ mixing ratio and δ^{18} O show a secular increase during the observation period from April 2012 to May 2017, while δ^{13} C shows a secular decrease during the same period. The negative correlation between the CO₂ mixing ratio and δ^{13} C is also observed in the seasonal timescale variations in the UT. The change rate of -0.043 ‰ ppm⁻¹ suggests that they are seasonally driven by the carbon exchange between the terrestrial biosphere and the atmosphere. The similar negative correlation is also shown in the LS, according to the relationship with SF₆ mixing ratio, however, it is interpreted as due to seasonal cycle in stratosphere-troposphere exchange (STE) processes including the Brewer-Dobson circulation (BDC) in the stratosphere. The SF₆ distribution also suggests that the STE process plays more crucial role on the seasonal relationship between CO₂ and δ^{18} O. In particular, air mass transport from deep stratosphere to the UT/LS region during winter/spring is important for the ¹⁸O distribution in the UT/LS because such air masses have high δ^{18} O derived from stratospheric ozone.