第55次日本南極地域観測隊気象部門報告2014

山本浩嗣^{1*}・今泉貴嗣¹・朝原信長¹・大竹 潤¹・佐伯悠樹¹

Meteorological observations at Syowa Station, Antarctica, 2014 by the 55th Japanese Antarctic Research Expedition

Hirotsugu Yamamoto1*, Takashi Imaizumi¹, Nobunaga Asahara¹, Jun Ohtake¹ and Yuuki Saeki¹

(2019年12月25日受付; 2020年3月9日受理)

Abstract: This report describes the results of meteorological observations at Syowa Station from February 1st, 2014 to January 31st, 2015, carried out by the Meteorological Observation Team of the 55th Japanese Antarctic Research Expedition (JARE-55). The observation methods, instruments, and statistical methods used by JARE-55 were the same as those used by the JARE-54.

Remarkable weather phenomena observed during the period of JARE-55 are as follows:

- The number of occurrences of the blizzard was 23 times, which was smaller than 24.6 of annually average times from 1981 to 2010. Blizzard occurred in January 2015, the maximum wind speed (10-minute average) was 41.8 m/s, the maximum instantaneous wind speed was 51.4 m/s, both records for this month and during the period of JARE-55. Blizzard occurred every month except November.
- The monthly sunshine duration in February 2014 was only 114.6 hours, a record low for this month.
- 3) On March 18th, 2014, the daily low relative humidity was 18%, which was the same value on July 11th, a record low since February 1981.
- 4) The amount of total ozone over Syowa Station from mid-August to mid-November was often less than 220 m atm-cm used as a target for the ozone hole for most of this period. The value for October 7th was 139 m atm-cm, which marked the minimum value of year 2014.

Keywords: meteorology, wintering, Syowa Station

要旨: この報告は第55次日本南極地域観測隊気象部門が,2014年2月1日~2015年1月31日まで昭和基地において行った気象観測結果をまとめたものである. 観測方法,測器,統計方法等は第54次隊と同様である. 越冬期間中の特徴のある気象状況は次のものがあげられる.

 i1) 越冬期間中のブリザードの発生回数は23回と1981~2010年のブリザードの 平均回数24.6を下回ったが、11月を除いて毎月ブリザードが発生した、2015 年1月のブリザードでは、第55次隊の記録では最大となる日最大風速 41.8 m/s,日最大瞬間風速51.4 m/sを記録し、1月の日最大風速及び日最大瞬 間風速の一位を更新した。

* Corresponding author. E-mail: hiro-yamamoto@met.kishou.go.jp

南極資料, Vol. 64, 178-227, 2020

Nankyoku Shiryô (Antarctic Record), Vol. 64, 178-227, 2020

© 2020 National Institute of Polar Research

一報告一 Report

¹ 気象庁. Japan Meteorological Agency, Otemachi 1-chome, Chiyoda-ku, Tokyo 100-8122.

- 2) 2014年2月の月間日照時間114.6時間は,2月の月間日照時間の少ない方か らの一位を更新した.
- 3) 2014年3月18日に,統計を開始した1981年2月以降で2002年7月11日と 並び,相対湿度の最小値(18%)を記録した.
- 4) 昭和基地上空のオゾン全量は、8月中旬から11月中旬までオゾンホールの目 安となる220m atm-cmを度々下回り、10月7日に2014年の最小値である 139m atm-cmを記録した。

キーワード: 気象, 越冬, 昭和基地

1. はじめに

南極昭和基地における気象観測は,第1次隊が1957年2月9日から開始し,越冬できなかった1958年及び一時閉鎖した期間(1962年から1965年まで)を除き,これまでほぼ半世紀の間,気象庁派遣隊員により継続している.蓄積された気象観測資料は,国際的な枠組みのなかで,地球環境の研究・監視等に幅広く利用されている.第55次日本南極地域観測隊気象部門は,2014年2月1日に第54次隊より昭和基地における定常気象観測業務を引き継ぎ,2015年1月31日までの1年間観測を行った.観測方法,観測測器及び観測値の統計方法等は第54次隊と同様である(安達ほか,2020).

地上気象観測,高層気象観測,地上日射放射観測は,第54次隊から引き継いだ観測装置 で実施した.2015年1月に日最大風速41.8 m/s,日最大瞬間風速51.4 m/sを記録した事例, 2014年2月の月間日照時間が少ない方からの一位を更新したこと,2014年3月18日に相対 湿度の最小値(18%)を記録したことについて,2.3.で述べる.地上気象観測装置を第55次 隊から57次隊にかけて移設・更新する計画であり,第55次隊では新測風塔,新百葉箱の建 設を行ったほか,新観測装置変換部,回転式日照計,新全天日射計の設置,データ取得・確 認などを実施した.オゾン観測について,オゾン全量・反転観測は,ドブソン分光光度計 Beck119を第55次隊で持ち込み,第54次隊使用のBeck122との比較観測を実施後,正式運 用とした.2014年のオゾン全量の観測結果については4.2.3.で,オゾン反転観測による気層 別オゾン量については4.3.3.でそれぞれ述べる.地上オゾン濃度観測は,2台のオゾン濃度 計を持ち込み,観測を実施した.その他の観測として,海水上に設置した雪尺による積雪観 測,S17航空拠点小屋屋上に設置した気象ロボットによる気象観測,内陸旅行中の気象観測 を実施した.なお,S16ロボット気象計は2014年1月31日に観測終了となっている.

これらの観測から得られたデータは,気象庁ホームページにて公開している(http://www. data.jma.go.jp/antarctic/datareport/index.html).

ここでは観測の経過及び結果,観測結果を用いた解析や天気解析による気象情報の提供に ついて報告する.本報告にて使用する各測器,観測方法等の名称は参考文献に示す気象庁の 各指針等に準拠する.

山本浩嗣ほか

2. 地上気象観測

2.1. 観測方法と測器

観測は地上気象観測指針(気象庁,2002)及び世界気象機関(WMO)の技術基準に,統 計処理については気象観測統計指針(気象庁,2005)にそれぞれ基づき行った.

観測項目と使用測器等を表1に、測器配置を図1に示す.

(1) 総合自動気象観測装置(地上系)による自動観測

気圧,気温,湿度,風向・風速,全天日射量,日照時間,積雪の深さ及び視程は,総合自動気象観測装置(地上系)により連続観測を行った.なお,視程計は目視観測の補助測器として運用した.

(2) 目視観測

雲・視程・天気は、目視により1日8回(00,03,06,09,12,15,18,21 UTC)の観 測を行った.また、大気現象については随時観測を行った.

(3) 海氷上の積雪の深さ観測

昭和基地付近の海氷上の積雪の深さの観測は、第1次越冬隊で基地周辺に雪尺を立てて観

(10	2014 Jun.2	.015).			
観測種目	観測時刻	観測 最小単位	使用測器等	型式	備考
現地気圧	連続	0. 1hPa	電気式気圧計 (静電容量型)	PTB220	巡回用電気式気圧計(静電容量型) により比較点検(年1回)
海面気圧	連続	0.1hPa	-		気温・現地気圧から算出
気圧変化量· 気圧変化型	毎正時	0. 1hPa	_		現地気圧から算出・決定
気温	連続	0. 1°C	電気式温度計 (白金抵抗型)	Pt-100	携帯用通風乾湿計により 比較点検(3ヶ月1回)
	-		携帯用通風乾湿計		比較観測に使用
露点温度	連続	0.1°C	-		気温・湿度観測値から算出
蒸気圧	連続	0. 1hPa	-		気温・湿度観測値から算出
相対湿度	連続	1%	電気式湿度計 (静電容量型)	HMP233LJM	携帯用通風乾湿計により比較点検 (3ヶ月1回)
	—		携帯用通風乾湿計		比較観測に使用
風向	連続	1°	周甫刑周向周連計	FF-11	測周塔 (地上真10,1m) /= 設署
風速	連続	0.1m/s	風旱至風向風还可	11 11	· 网质培(地工商10.1m/10.00世
全天日射量	連続	0. 01MJ/m ²	日射日照計 (全天電気式日射計)	MS-62F	気象棟南西側旗台地に設置 日照計と一体型
日照時間	連続	0. 1h	日射日照計 (太陽追尾式日照計)	MS-101D	気象棟南西側旗台地に設置 日射計と一体型
	連続	1cm	超音波式積雪計	CF-212	観測棟北東側海岸斜面に設置
1頁 当 /木	週1回	同上	雪尺(竹竿9本)		北の浦海氷上に設置
雲量·雲形・ 向き·高さ	定時		目視		
2日 壬 旦	完時(日祖)	10m(日相)	目視		
记元作主			視程計(現象判別付)	TZE-6P	参考測器
大気珇象	党陆		目視		
八刈坑水	िम का		視程計(現象判別付)	TZE-6P	参考測器
	山の「白叶・	1 00 00	00 00 10 1E 10 0	11170 000	

表1 昭和基地における地上気象観測使用測器等一覧表(2014年2月~2015年1月).

 Table 1.
 Observation elements, observation frequency, minimum units, and instruments at Syowa Station (Feb.2014–Jan.2015).

※観測時刻の「定時」は、00,03,06,09,12,15,18,21UTCの8回.

180

図1 昭和基地主要部と測器感部の配置(国土地理院: 南極の地理空間情報データに加筆).

①地上気象観測:気圧計

- オゾン観測 :ドブソン分光光度計
 - 日射放射観測:ブリューワー分光光度計・下向き放射(全天日射 計・直達日射計・赤外放射計・紫外域日射計)・ サンフォトメータ
- ②地上気象観測:風向風速計·温度計·湿度計·視程計
- ③地上気象観測:日射日照計
- ④地上気象観測:積雪計

⑤日射放射観測:上向き反射放射(全天日射計・赤外放射計・紫外 域日射計)

- ⑥オゾン観測 :地上オゾン濃度計
- ⑦地上気象観測:雪尺
- Fig. 1. Location of surface meteorological instruments in the main part of Syowa Station.
 - (1) Surface observation: Barometer

Ozone observation: Dobson spectrophotometer

Solar and infrared radiation observation: Brewer spectrophotometer, Downward solar and infrared radiation (Pyranometer, Pyrheliometer, Pyrgeometer, UV radiometer), Sunphotometer

- ⁽²⁾ Surface observation: Wind sensor, Thermometer, Hygrometer, Visibility sensor
- 3 Surface observation: Sunshine sensor
- 4 Surface observation: Snow depth sensor
- (5) Solar and infrared Radiation observation: Upward radiation (Pyranometer, Pyrgeometer, UV radiometer)
- 6 Ozone observation: Surface ozone
- ⑦ Surface observation: Snow scale

測したのが最初であり,第15次隊までは主として雪氷部門の研究観測の一環として,第16 次隊以降は定常気象観測の一項目として実施している(気象庁,1989).第40次隊より超音 波式積雪計を導入することで基地内(陸上)の連続観測を開始したが,それまでの観測は引 き続き海氷上の積雪把握に有用と考え,雪尺による海氷上の積雪の深さの観測を継続してい る.第55次隊においても,北の浦の海氷上に,10m間隔で20m四方に9本の竹竿を利用 した雪尺を立て,週1回程度の割合で雪尺の雪面上の長さを測定し,9本の雪尺の前観測と の差を平均して前回の積雪の深さに加算したものを積雪の深さの観測値とした.

2.2. 観測経過

総合自動気象観測装置(地上系)系統の各測器は、おおむね順調に作動した.

(1) 気圧

電気式気圧計を気象棟内に設置し,通年観測した.測器の精度監視と器差補正値算出のた めに,国内から持ち込んだ巡回用電気式気圧計との比較観測を行い,越冬観測開始時にオフ セットの設定を行った.観測はおおむね順調であった.

(2) 気温,湿度

電気式温度計及び電気式湿度計を百葉箱内の強制通風式通風筒内に設置し,通年観測した. おおむね順調に観測を行った.携帯用通風型乾湿計による比較観測を3か月に1回行い,観 測装置の値が許容範囲内にあることを確認した.保守及び百葉箱内の除雪は,正時にかから ないよう注意した上で実施し,この間の気温と湿度の観測値は欠測とした.

2015年1月3日に温度計,湿度計の交換を行い,交換の間は欠測とし,日平均気温,日 平均湿度等は準完全値とした.

(3) 風向・風速

風車型風向風速計を測風塔上に設置し,通年観測した.おおむね順調に動作したが,風向 風速計の定期点検,臨時点検,交換の実施により,日平均風速が準完全値となった日がある. また,総合自動気象観測装置の障害,昭和基地全停電,低温弱風時における風向風速計凍結 の確認のために欠測が生じ,日平均風速が準完全値となった日があった.風向風速計の障害 により,風向の欠測が頻発した日があり,風向の1時間値,日最大風速と日最大瞬間風速の 風向が欠測となった日があった.

(4) 全天日射量・日照時間

全天電気式日射計と太陽追尾式日照計が一体となっている日射日照計を気象棟南西の旗台 地に設置し、それぞれ通年観測した.2015年1月14日に全天電気式日射計及び太陽追尾式 日照計の交換を行い、交換の間は全天日射量及び日照時間は欠測とし、全天日射量積算値を 欠測、日射量の日合計を資料不足値とした.

(5) 積雪の深さ

超音波式積雪計を観測棟北東の北の浦に下る海岸に設置し,通年観測した.ふぶき,低温 時などに異常値が観測され,日最深積雪及び降雪の深さ日合計が資料不足値または欠測と なった日があった.

(6) 視程(視程計による参考記録)

視程計(現象判別機能付)を気象棟北東に設置して,目視観測に資するための参考測器と して通年観測した.ふぶきにより投受光部に雪が付着するため,天候回復後に投受光部の清 掃を実施した.この他にも投受光部の清掃を随時行った.

(7) 海氷上の積雪の深さの観測

雪尺観測は第50次隊から継続して同じ場所で観測している.第54次隊から引き継ぐ際に, 雪尺の多くが強風や融雪で傾いていたため,2014年1月27日に9本全ての雪尺を同じ位置 に新設して新旧の雪尺を同時に測定し,それ以降は新設した雪尺のみを観測した.強風,融 雪等により雪尺が傾いた場合は随時立て直して観測を実施した.雪尺を立て直した場合は, 可能な限りにおいて,建て直しの前後で新旧の雪尺を同時に測定し,それ以降は新設した雪 尺のみを観測することで観測値を接続した.これにより,積雪の深さを0cmとする基準日 を第54次隊と同じく,第50次隊が雪尺を設置した2009年3月21日とした.

2.3. 観測結果

月別気象表を表2に、観測開始からの極値・順位値の10位までの更新記録を表3に、ブ リザードの概要を表4に示す.越冬期間中のブリザードの発生回数は23回と1981年~2010 年のブリザードの平均回数24.6を下回ったが、11月を除いて毎月ブリザードが発生した. また、2014年2月から2015年1月の海面気圧、気温、風速、雲量及び日照時間の旬ごとの 経過を図2に、海氷上(雪尺)と陸上(積雪計)の積雪の深さの観測値の比較を図3に示す. さらに、越冬期間中の天気概況を表5に示した.特徴的な気象状況について、以下に述べる. 1) 2014年2月上旬は期間を通じ、北の海上を通過した低気圧の影響などで曇や雪の日が 多く、旬間日照時間は25.8時間と、平年値である91.4時間を大きく下回った.その後も、 気圧の尾根に入り晴れた日もあったが、曇や雪の日が多かった影響で、2014年2月の月間 日照時間114.6時間は、2月の月間日照時間の少ない方からの一位を更新した.

2) 2014年3月は、低気圧の影響などにより曇や雪の日が多かったが、18日~19日には地 上付近に乾燥した空気が入ったことにより、3月18日に、統計を開始した1981年2月以降 で2002年7月11日と並び、相対湿度の最小値(18%)を記録した。

3) 2015年1月のブリザードにより,日最大風速41.8 m/s,日最大瞬間風速51.4 m/s を記録し, 1月の日最大風速及び日最大瞬間風速の一位を更新した.この強風について,Yamada,K.,N. Hirasawa (2018)は、昭和基地に接近した低気圧に伴う北風が氷床の海岸に沿って東向きに 転向し、地形性ブロッキングの作用により東風の低層ジェットが形成されたことと関係があ ると解析している.

2.4. 観測装置の更新整備

第55次隊から第57次隊にかけて,総合自動気象観測装置をJMA-95型地上気象観測装置 からJMA-10型地上気象観測装置に更新する.第55次隊では新測風塔,新百葉箱の建設を行っ たほか,ケーブル敷設ルートの選定を行った.JMA-10型地上気象観測装置の観測装置変換 部を気象棟に設置し,回転式日照計,全天日射計を気象棟屋上に設置して,日照時間,全天 日射量の試験データの取得,確認を実施し,回転式日照計,全天日射計の設置場所を選定し た.なお,「しらせ」が2年続けて昭和基地に接岸できず,燃料をはじめとする物資補給が 不十分な状況であったことから,第55次隊では昭和基地燃料備蓄量の回復が優先とされた ことを踏まえ,節電対策として,試験運用は2014年7月13日から2015年1月5日の期間 に限って実施した.使用測器を表6に示す.

		表	2 昭和	基地にお	ける地」	:気象観(則月別気須	良表 (201	4年2月	$\sim 2015^{\pm}$	F1月).				
		Table 2	2. Moni	hly summ	aries of s	urface ob	servations	at Syowa	Station (i	^c eb.2014-	-Jan. 201.	5).			
項目	単位	2014年 1月	2	3	4	5	9	7	8	6	10	11	12	通年	2015 1
平均海面気圧 最低海面気圧	hPa hPa	992. 3 977. 4	984. 2 964. 6	985.4 955.0	982. 6 960. 0	990. 1 971. 0	988. 6 967. 3	983. 7 952. 7	988. 1 952. 8	989.4 963.0	987.0 961.2	988. 3 970. 1	979.8 955.6	986. 6 952. 7	988. 6 970. 4
起日		2	27	30	17	21	∞	4	7	4	13	13	5		17
平均気温 見立気温の辺や	ပ္င	-1.2	-2.7	-6.2	-10.7	-15.2	-15.6	-19.5	-22.2	-17.1	-16.7	-0.6 -	-1.3	-11.2	-2.2
東同文画ジー塔 最低気温の平均	ပ္စ	-3.9	-5.0	-9.2 -9.2	-13.7	-19.0	-19.5	-23.9	-27.0	-21.3	-21.0	-10.1	-4.1	0. 2 -14. 8	-5.4
最高気温	ç	5.4	2.1	-0.7	-4.2	-3.2	-4.8	-4.8	-7.9	-5.6	-1.4	0.1	7.8	7.8	3.6
起日 最休信泪	ζ	15 -8 6	-13 0	-16.4	3 -95 A	15 -90 7	7 -90 0	4 -37 0	29 -38 4	9 -33 7	30	21 -16 8	-0.3	-38 4	-11 0
根睑处置)	0 00 0	19.7	10.4 24	30	- 22	28	17	13	18	1.12	14.0	с. 4	+ •00	30
最低気温 0℃以上の日数	ш і	L.	1.1	I	I	I	T	I	I	I	ı	I			1
半均気温 0℃以上の日数 専責有調 0℃以上の日数		9 9 9 9	010					1 1				I -	206	15 56	1
城间Xim 。CXXエジェダ 最高気温 -10℃以上の日数	IШ	31	28	31	26	13	13	4	5	8	8	30	31	228	31
最低気温 -20°C未満の日数	Ш	I	I	I	2	14	13	22	24	16	19	I	I	110	I
平均気温 -20℃未満の日数 専点気道 -20℃+主灌の日巻	шп	1 1	1 1	1 1		3 10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	16 7	20	6 r	∞ ı	1 1	1 1	72 30	1 1
<u>- 双肉へ画 - 20 C/A 間ック 日 歌</u> 平均蒸気圧	hPa	4.4	3.7	2.7	2.2	1.6	1.5	- 1-1-	0.8	1.2	1.2	2.6	3.8	2.2	3.8
平均相対湿度	8	79	73	69	76	71	69	70	66	66	66	68	68	70	72
平均風速 ■ 今回む	m/s/m	3. 5 MINTE	8.6 EMF	7.9 FNIE	9.0 EMF	7.0 MF	7.8 EME	5.9 MF	4.1	7.3 FMF	3.7	5.8 MF	7.4 ENTE	6.5 EMF	5.1)
取多 取 取 和 同 本 一 一 二 	10.771 <u>//</u> e	90 1	81 3	33 4	58 3	31 4	37 G	33 0 33 0	95 5 1	23 5 J	5 1 10	99 A	37 Q	37 G	41 8 1
	c /iii	NE. 1	ENE, 27	ENE, 30	ENE, 25	ENE. 13	NE, 13	ENE. 4	ENE. 3	X. 9	NE, 18	NE. 3	ENE. 1	ENE	NE. 17
最大瞬間風速	m/s	24.1	37.7	39.7	35.0	38.4	44.0	40.6	32.9	43.5	27.5	25.6	46.4	46.4	51.4
風向起日	1	NE, 1	ENE, 4	ENE, 30	NE, 7	ENE, 13	NE, 13	ENE, 4	X, 25	X, 8	NE, 18	ENE, 8 *	ENE, 1	ENE	ENE, 17
最大風速 10.0m/s以上の日数 15.0m/s以上の日数	ш ш	1	11	20	24 18	11	16 12	12	10	17	2 2	17	20	182 107	თო
30.0m/s以上の日数	Ш		3	1	1	2	2	3		2		. 1	1	14	2
日照時間	٩»	286.0)	114.6	82.7	46.2	40.6	1 1	0.0	70.2	157.7	306.7	290.9 16	360.6	1756.2	442.9)
^{口烘} 平均全天日射量	$M_{\rm I}/m^{\circ}$	24.6)	24 14.7	7.3	2.4	0.3	0.0	0.1	1.5	41 6.8	04 15.8	$^{40}_{23.4}$	40 28.4	10.4	27.2
不照日数	ш	4	7	8	19	18	30	31	12	9	5	°	e	146	2
平均鰥量 亚祜爵具 1 5土藩60巻		8.1	9.3	8.9	8.4	5.8	7.6	7.3	6.5 E	7.1	6.3	7.5	7.6	7.5	6.0
十251年 1:31 (1971) 日教 8 517 1-10 日教	II	19	25	- 66	1 16	12	15 0	0 L2	0 12	с 14	7 [7 T	17	192	10 1
月最深積雪	Ľ	102)	89]	80)	87)	86	120]	117)	128)	128]	129)	119	122	129]	96
超日本部である。		°°;	c7 2	31	9	17	14 *	29	24	L 0,	17	19 *	ې ۳۵	L 010	1 00
単目がし休さり口目 番日巻	Π	66	66	000	000	13	10 /	41 J	16 1	11 I	77	11 /	77	100	<u>61</u>
■ I ⊗ 霧日数	IШ	101	- i	ζ. I	4 I	<u>-</u> ہ	3	1	2 07	; '	, –		> I	16	1 9
ブリザード日数	Ш	I	2	4	6	9	9	6	2	7	1	0	°	49	2
ブリザード回数	▣	'		1.5	3.5		2	4	2	4	1	0	2	22	1
・統計万法は気象観測統計指針(・数値右側の符号は次のとおり 「) 」 進宗全値 統計値を求め	気象圧、 める対象	2005) に。 となる資料	ちる. はの一部が	タけている	が許容する	資料数を満	たす場合。								

「」」:資料不足値、統計値を求める対象となる資料が許容する資料数を満たさない場合. 「*」:1つの極値に対して期間内に起日が2日以上ある場合、最も新しい日付のみを示している. ・5月31日から7月12日までは記録上太陽中心が地平線上に現れない、不照日数にはこの期間(43日)を加えてある.

185

山本浩嗣ほか

表3 昭和基地における地上気象観測極値・順位値更新記録(2014年2月~2015年1月).

Table 3. New records of surface meteorological observations extrema and ranking at Syowa Station(Feb.2014–Jan.2015).

年月	要素	観測値	起日	順位
2014年2月	月間日照時間の少ない方から	114. 6h		月1位
	月最深積雪	89]cm	2日	月2位
3月	日最小相対湿度	18%	18日	通年1位 月1位
	日最小相対湿度	22%	19日	通年8位 月3位
	日最小相対湿度	27%	5日	月4位
	日最小相対湿度	31%	6日	月9位
	日最大風速・風向	ENE 33.4m/s	30日	月10位
	月最深積雪	80cm	31日	月3位
4月	日最高気温の低い方から	−20. 9°C	30日	月6位
	月最深積雪	87cm	6日	月4位
5月	日最高気温の低い方から	−23. 7°C	3日	月9位
	月間日照時間の多い方から	40. 6h		月3位
	月最深積雪	98]cm	17日	月2位
6月	日最低気温の高い方から	-6.0°C	13日	月9位
	月最深積雪	120]cm	14日	月3位
7月	月間日照時間の少ない方から	0. 0h		通年1位 日1位
	月最深積雪	117cm	29日	月4位
8月	日最高気温の低い方から	-31.6°C	10日	月9位
-,,,	月平均気温の低い方から	-22. 2°C		月8位
	月最深積雪	128cm		月3位
9月	月最深積雪	128]cm	7日	月3位
10月	日最高気温の高い方から	−1. 4°C	30日	月7位
	月平均気温の低い方から	−16. 7°C		月2位
	月間日照時間の多い方から	306.7h		月2位
	月最深積雪	129cm	17日	月4位
11月	月最深積雪	119cm	19日	月5位
12月	日最高気温の高い方から	7.8℃	23日	月7位
	日最低気温の高い方から	0.5℃	23日	月7位
	日最少相対湿度	32%	22日	月9位
	日最大風速・風向	ENE 37.9m/s	1日	月2位
	日最大瞬間風速・風向	ENE 46.4m/s	1日	月2位
	月最深積雪	122cm	5日	月2位
2015年1月	日最高気温の低い方から	-3. 3°C	30日	月8位
	日最低気温の低い万から	-11.0°C	30日	月8位
	月半均気温の低い万から	-2.2°C		月3位
	日東小相灯徑度	29%	5日	月312
	日 取 八 風 速 · 風 向	NE 41.8m/s	17日	
	日取八風迷・風内 日見十照明周末・周向	ENE 50.4m/s	10日	月 51位
	日取八桝间風迷 [•] 風回 日長七瞬間周末,風向	ENE 31.4m/S	16日	日1位
	日期八時間周辺・周辺	ENE 40.9M/S	10日	日10位
	日島深積雪	911 96cm	1日	日4位
	/7 取1不但 当	96Cm	1日	月 411.

・ 数値右側の符号は次のとおり

(1)」:資料不足值.統計值を求める対象となる資料が許容する資料数を満たさな い場合.

	2015).
(2014年2月~2015年1月).	tt Syowa Station (Feb.2014-Jan.
・ドの概要	(blizzards) c
そ4 昭和基地におけるブリザー	Summaries of heavy snowstorms
表	e 4.
	Table

面気圧 (hPa	起時	27日20時 9	27日18時11	30日 3時44	7日15時46	10日12時 5	27日19時 7	16日14時35	8日 1時37	12日21時 5	4日 4時 (9日18時20	29日 4時25	30日11時36	3日 9時1(6日16時53	4日18時27	6日22時18	8日23時18	25日11時 4	18日11時24	1日 9時38	6日 5時42	17日 3時1(
最低海	魚田	964.6	973.9	955.0	974.4	961.4	975. 2	972. 3	967. 3	975.8	952.7	963. 5	980. 5	985.4	975.6	968. 2	963. 7	966. 5	974.0	976.4	982. 0	962.1	959.8	970.4
間風速 (m/s)	り 起時	27日20時 8分	27日17時13分	30日 2時24分	7日16時27分	10日 5時24分	28日17時59分	13日16時35分	7日22時47分	13日 2時43分	4日 4時 5分	9日14時 2分	29日 5時26分	30日19時28分	3日 9時36分	6日 8時50分	4日18時29分	7日 3時49分	8日23時40分	25日 3時 8分	18日13時 9分	1日10時 6分	6日 7時46分	17日 3時28分
長大瞬日	風	ENE	ENE	ENE	R	ENE	۳	ENE	ENE	R	ENE	IJ	R	ENE	ENE	R	ENE	ENE	XX	ENE	IJ	ENE	ENE	ENE
	風速	37.6	28. 7	39.7	35. 0	34.2	27.2	38.4	32.0	44. 0	40.6	27. 9	24.5	27.7	30. 9	19.8	32.6	31.1	43.5	29.6	27.5	46.4	31.9	51.4
.速(m/s)	起時	27日20時10分	27日16時40分	30日 1時20分	7日14時40分	10日 5時30分	28日11時30分	13日17時00分	7日15時20分	13日 2時00分	4日 4時10分	9日18時30分	29日 5時30分	30日19時50分	3日 9時40分	6日 8時10分	4日18時30分	7日1時50分	9日 2時10分	25日 3時10分	18日11時50分	1日 9時 0分	6日7時50分	17日 3時20分
最大風	風向	ENE	ENE	ENE	NE	ENE	NE	ENE	ENE	NE	ENE	NE	NE	ENE	ENE	NE	ENE	ENE	XXX	ENE	NE	ENE	ENE	¥
	風速	31.3	23.0	33.4	27.4	28.0	20.2	31.4	25.9	37.9	33.0	23.5	21.9	22.2	25.5	16.2	27.3	24.7	33.5	24.6	24.1	37.9	27.2	41.8
바바다	누 ത 다 다 [8]	0時間 0分	0時間 0分	15時間50分	0時間 0分	0時間50分	0時間 0分	34時間 0分	0時間 0分	5時間10分	7時間10分	0時間 0分	2時間 5分	0時間 0分										
目日十四十分初分	称	14時間20分	15時間 0分	41時間20分	12時間50分	29時間20分	32時間38分	95時間50分	37時間50分	56時間 0分	58時間48分	15時間30分	9時間50分	17時間47分	8時間 0分	10時間 2分	16時間20分	9時間30分	21時間45分	12時間20分	9時間20分	23時間40分	6時間30分	11時間40分
88 TT UT 80	彩灯时间	14時間20分	15時間 0分	57時間10分	12時間50分	30時間10分	32時間38分	129時間50分	37時間50分	61時間10分	65時間58分	15時間30分	9時間50分	17時間47分	8時間 0分	10時間 2分	18時間25分	9時間30分	21時間45分	12時間20分	9時間20分	23時間40分	6時間30分	11時間40分
多 7 日 は	おして教	2014年 2月28日 1時50分	2014年 3月27日19時20分	2014年 4月 1日 3時20分	2014年 4月 8日 1時 0分	2014年 4月11日 4時40分	2014年 4月29日 3時30分	2014年 5月18日22時 0分	2014年 6月 8日22時 0分	2014年 6月14日10時30分	2014年7月5日9時10分	2014年7月10日3時50分	2014年 7月29日14時 0分	2014年 7月31日 4時30分	2014年 8月 3日13時 0分	2014年 8月 6日17時 2分	2014年 9月 5日 9時35分	2014年 9月 7日 7時10分	2014年 9月 9日15時10分	2014年 9月25日14時 5分	2014年10月18日17時40分	2014年12月 2日 4時 0分	2014年12月 6日10時50分	2015年 1月17日 8時50分
中 ロ 74 88	(커)(히 다 다	2014年 2月27日11時30分	2014年 3月27日 4時20分	2014年 3月29日18時10分	2014年 4月 7日12時10分	2014年 4月 9日22時30分	2014年 4月27日18時52分	2014年 5月13日12時10分	2014年 6月 7日 8時10分	2014年 6月11日21時20分	2014年7月2日15時12分	2014年 7月 9日12時 0分	2014年 7月29日 4時10分	2014年 7月30日10時43分	2014年 8月 3日 5時 0分	2014年 8月 6日 7時 0分	2014年 9月 4日15時10分	2014年 9月 6日21時40分	2014年 9月 8日17時25分	2014年 9月25日 1時45分	2014年10月18日 8時20分	2014年12月 1日 4時20分	2014年12月 6日 4時20分	2015年 1月16日21時10分
影 ~~ 전	通宵 殺	5501 B	5502 B	5503 B	5504 B	5505 B	5506 B	5507 A	5508 B	5509 A	5510 A	5511 B	5512 C	5513 B	5514 C	5515 C	5516 C	5517 C	5518 A	5519 B	5520 C	5521 A	5522 C	5523 C

※階級区分は次による. A級:視程100m未満,風速25m/s以上の状態が6時間以上継続 B級:視程1km未満,風速15m/s以上の状態が12時間以上継続 C級:視程1km未満,風速10m/s以上の状態が6時間以上継続

- 図 2 昭和基地における地上気象旬別経過図 (2014年2月~2015年1月). 平年値は 1981年~2010年の平均値.
- Fig. 2. Time series of 10-day mean surface meteorological data at Syowa Station (Feb.2014–Jan.2015). The Normals are average values calculated based on observed data from 1981 to 2010.

Month (Feb.2014-Jan.2015)

図 3 海氷上 (雪尺) と陸上 (積雪計)の積雪の深さの観測値の比較 (2014 年 2 月~2015 年 1 月).

Fig. 3. Comparison of snow depth on sea ice with that on land at Syowa Station (Feb.2014–Jan.2015).

山本浩嗣ほか

表 5	昭和基地における天気概況	(2014年2月~2015年	1月).	(1/2))
-----	--------------	----------------	------	-------	---

 Table 5.
 Weather summaries at Syowa Station (Feb.2014–Jan.2015). (1/2)

年・月	天気相	我況
	低気E なく,	Eの接近などにより曇や雪の日が多かった.中旬後半は気圧の尾根に入り、晴または薄曇の日が多かったが、月間日照時間はかなり少 2月の月間日照時間の少ない方からの一位を更新した.月平均気温は、平年並だった.
2014年	上旬	昭和基地周辺は期間を通じて、北の海上を通過した低気圧の影響などで曇や雪の日が多かった。3日から4日にかけては発達した低気圧 が接近し、最大風速30.0m/sのふぶきとなった。旬平均気温は、平年並だった。旬間日照時間は、かなり少なかった。
2月	中旬	期間の前半は低気圧の接近により、曇や雪の日が多かった。期間の後半は気圧の尾根に入り、晴または薄曇の日が多かった。旬平均気 温は、低かった。旬間日照時間は、平年並だった。
	下旬	低気圧の接近により、曇や雪の日が多かった、22日及び27日は、発達した低気圧が接近して最大風速が30m/sを超えるふぶきとなり、 27日から28日にかけてはブリザードとなった、旬平均気温は、高かった、旬間日照時間は、少なかった.
	気圧(り、1 た.)	D尾根に入って晴れた日もあったが、低気圧の影響などにより、曇や雪の日が多かった。18日~19日には地上付近に乾燥した空気が入 8日は、統計を開始した1981年2月以降で2002年7月11日と並び、相対湿度の最小値(18%)を記録した。月平均気温は、平年並だっ 月間日照時間は少なかった。
	上旬	期間のはじめは気圧の尾根に入って晴れたが、その後は昭和基地周辺は低圧部となることが多く、曇や雪の日が多かった。 旬平均気温、旬間日照時間はともに平年並だった.
2014年 3月	中旬	期間前半は、昭和基地の北の海上を2つの低気圧が通過した影響で曇の日が多かった。その後、昭和基地周辺の地上付近は気圧の尾根 に入ったものの、薄曇や曇の日が多かった。18日~19日には地上付近に乾燥した空気が入り、18日は、統計を開始した1981年2月以降 で2002年7月11日と並び、相対湿度の最小値(18%)を記録した。20日は発達した低気圧が接近し、最大風速は25m/sを超えた。旬平均 気温は、平年並だった、旬間日照時間は、少なかった。
	下旬	気圧の尾根に入り晴れた日もあったが、低気圧の接近により、曇や雪またはふぶきの日が多かった。27日及び29日から4月1日にかけ て、発達した低気圧が接近してふぶきとなり、ブリザードとなった。 旬平均気温は、平年並だった、旬間日照時間は、少なかった。
	気圧(平均分	D尾根や大陸の高気圧に入って晴れた日もあったが、期間を通じて、低気圧の接近等により、曇や雪またはふぶきの日が多かった。月 気温、月間日照時間はともに平年並だった.
	上旬	気圧の尾根に入り晴れた日もあったが、低気圧の接近により、曇や雪またはふぶきの日が多かった、7日から8日及び9日から11日にか けて、発達した低気圧が接近してふぶきとなり、ブリザードとなった、旬平均気温、旬間日照時間はともに平年並だった.
2014年 4月	中旬	期間を通じて、低気圧の接近や、昭和基地の北の海上を通過した低気圧の影響により、曇や雪の日が多かった、旬平均気温は、低かった、旬間日照時間は、少なかった。
	下旬	期間のはじめと終わりは、昭和基地付近は大陸の高気圧に入って晴れた、期間の終わりには地上付近に大陸からの寒気が入って、30日 の日最高気温は-20.9℃を記録し、4月における日最高気温の低い方からの第六位の値となった。期間中頃は、続けて低気圧が接近し、 畳やふぶきの日が多かった。27日から29日にかけて低気圧が接近してふぶきとなり、ブリザードとなった。旬平均気温は、平年並だった。旬間日照時間は、多かった。
	上旬, ぶき(下旬は、高気圧や気圧の尾根に覆われて晴れた日が多かった。中旬は、13日から18日にかけてブリザードになるなど、ふぶき、地ふ の日が多かった。月間日照時間はかなり多く、5月の月間日照時間の多い方からの第三位の値となった。月平均気温は、低かった。
2014年	上旬	昭和基地の北の海上を通過した低気圧や昭和基地に近づいた低気圧の影響で曇や雪の日もあったが、期間を通じて、大陸の高気圧や気 圧の尾根に覆われて晴れた日が多かった。大陸からの寒気と放射冷却により冷え込み、日平均気温は5,6日を除いて-20℃を下回り、 旬平均気温、-21.1℃と5月上旬の平年値より9℃も低く、最も気温の低い8月下旬の平年並に相当する気温となった。旬平均気温は、 かなり低かった。旬間日照時間は、かなり多かった。
2014年 5月	中旬	期間のはじめは気圧の尾根に覆われて晴れた。その後は、発達した低気圧が昭和基地にゆっくり近づいて昭和基地付近に停滞したほか、 が、昭和基地に低気圧が接近した影響で、期間終わりにかけて、ふぶき、地ふぶきの日が続き、13日から18日はブリザードとなった。 旬平均気温は、高かった、旬間日照時間は、多かった。
	下旬	気圧の尾根や高気圧に覆われて晴れた日が多かった.期間の終わりは雲が広がりやすく、28日から31日は雪となった.旬平均気温は、 平年並だった.旬間日照時間は、多かった.
	上旬(の終れ	は、天気は概ね周期的に変わった.中旬は.11日から14日にかけてブリザードになるなど,曇やふぶきの日が多かった.下旬は,期間 つりに快晴の日が続くなど,晴の日が多かった.月平均気温は,平年並だった.
2014年	上旬	期間のはじめは高気圧に覆われたが、湿った空気の影響で雲が広がりやすかった。その後昭和基地付近は、低気圧と気圧の尾根の影響 を交互に受けて、天気は周期的に変わった。7日から8日にかけては、発達した低気圧が接近してふぶきとなり、ブリザードとなった。 旬平均気温は、低かった。
6月	中旬	期間後半は高気圧に覆われて一時的に晴れたものの、昭和基地付近に接近した低気圧の影響などで、期間を通じて、曇やふぶきの日が 多かった、11日から14日にかけては、発達した低気圧が接近し、また、大陸の高気圧との間で昭和基地付近は気圧の傾きが大きかった ため、最大風速が35m/sを超えるふぶきとなり、ブリザードとなった、旬平均気温は、高かった、
	下旬	期間のはじめは晴れた時間も多かったが、昭和基地付近は低圧部となり、雪が降り、一時ふぶきになることもあった。その後は気圧の 尾根に覆われることが多く、晴の日が多かった。特に期間の終わりは、乾燥して快晴の日が続いた。旬平均気温は、低かった。
	上旬, て晴れ たがり	下旬は、発達した低気圧が接近して、それぞれ2回ブリザードとなった、中旬は、期間を通じて、大陸の高気圧や気圧の尾根に覆われ れた日が多かった、1日に今冬で初めて日最低気温が-30℃を下回って以降、しばしば日最低気温は-30℃を下回った。中旬に極夜は明け 1間日照時間は0.0時間だった、月平均気温は、低かった、月間日照時間は、かなり少なかった。
2014年 7月	上旬	1日は気圧の尾根に入って晴れ、日最低気温が-35.5℃と、今冬で初めて-30℃を下回った.2日から5日にかけては、発達した低気圧が 接近して最大風速が30m/sを超えるふぶきとなり、ブリザードとなった、その後、雲が広がりやすかったものの、気圧の尾根に入って 晴れたが、期間終わりには、再び発達した低気圧が接近してふぶきとなり、ブリザードとなった、旬平均気温は、平年並だった.
	中旬	期間のはじめに低気圧の影響で雪が降ったが、期間を通じて、大陸の高気圧や気圧の尾根に覆われて晴れた日が多かった、旬前半に極 夜が明けて可照時間はあったが、旬間日照時間は0.0時間だった、旬平均気温は、低かった.
	下旬	気圧の尾根に入り晴れた日もあったが、低気圧の接近や、昭和基地の北の海上を通過した低気圧の影響により、雪や曇の日が多かった、29日及び30日から31日にかけて、発達した低気圧が接近してふぶきとなり、ブリザードとなった、中旬に続き、旬間日照時間は 0.0時間だった、旬平均気温は、低かった、旬間日照時間は、かなり少なかった。

表 5 昭和基地における天気概況(2014年2月~2015年1月).(2/2)

 Table 5.
 Weather summaries at Syowa Station (Feb.2014–Jan.2015). (2/2)

年・月	天気樹	既況
	上旬, 大きた	中旬は、日最低気温が−30℃をしばしば下回った、一方、下旬は昭和基地の北の海上から暖かい空気が入って気温が高く、寒暖の差が かった、月平均気温は、低かった、月間日照時間は、多かった.
	上旬	昭和基地付近は、期間中頃にかけて、気圧の尾根と低気圧の影響を交互に受けて、天気は周期的に変わった。3日及び6日には、発達し た低気圧が接近してふぶきとなり、プリザードとなった、期間の終わりは概ね晴れて、9日、10日は日平均気温が−30℃を下回った、地 上付近に湿った空気が入り、9日は霧となった、旬平均気温は、低かった、旬間日照時間は、多かった.
2014年 8月	中旬	期間前半は、大陸の高気圧や気圧の尾根に覆われて晴れた日が多かった。期間後半は、気圧の尾根に入り晴れた日もあったが、低気圧 の接近や、昭和基地の北の海上を通過した低気圧の影響により、曇や雪の日が多かった。日最低気温は12,17日を除いて-30℃を下回 り、旬平均気温は、-27.6℃と平年値より8.3℃も低かった。旬平均気温は、かなり低かった。旬間日照時間は、かなり多かった。
	下旬	期間の中頃にかけて、気圧の尾根と低気圧の影響を交互に受けて、天気は周期的に変わった。期間の終わりは、昭和基地の北の海上を 通過した低気圧の影響により、曇や雪の日が多かった。23日と期間の中頃から終わりにかけて、昭和基地の北の海上から暖かい空気が 入り、気温が高かった、旬平均気温は、高かった、旬間日照時間は、少なかった。
	上旬にを通し	。 、発達した低気圧が接近してふぶきの日が多く、3回ブリザードとなった、中旬、下旬は、気圧の尾根や高気圧に覆われるなど、期間 じて晴れた日が多かった、月平均気温は、平年並だった、月間日照時間は、多かった、
2014年 9月	上旬	期間のはじめは気圧の尾根に入り晴れ間があったが、4日から5日にかけて発達した低気圧が接近したほか、6日から9日にかけては、発達した低気圧が接近し、ゆっくり昭和基地の北の海上を移動したため、曇やふぶきの日が多かった。4日から5日及び6日から7日にかけ てブリザードとなったほか、8日から9日にかけては最大風速が30m/sを超えるブリザードとなった。旬平均気温は、かなり高かった。 旬間日照時間は、かなり少なかった。
	中旬	昭和基地の北の海上を通過した低気圧や昭和基地に近づいた低気圧の影響などで曇や雪またはふぶきの日もあったが、期間を通じて、 大陸の高気圧や気圧の尾根に覆われて晴れた日が多かった.旬平均気温は、低かった.旬間日照時間は、平年並だった.
	下旬	期間の中頃に発達した低気圧が接近してブリザードとなったが、気圧の尾根や高気圧に覆われるなど、期間を通じて晴れた日が多かった、旬平均気温は、低かった、旬間日照時間は、かなり多かった.
	18日(均気) らの二	こブリザードとなり、その前後の数日は雪の日が多かったが、期間を通じて雲が広がることはあったものの、晴の日が多かった、月平 晶はかなり低く、10月の月平均気温の低い方からの二位の記録となった、月間日照時間はかなり多く、10月の月間日照時間の多い方か 二位の記録となった。
2014年	上旬	昭和基地の北の海上を通過した低気圧や昭和基地に近づいた低気圧の影響などで雲が広がることも多かったが、4日と10日に一時雪が 降ったものの、期間を通じて天気の崩れはなく、晴や曇の日が多かった、旬平均気温は、かなり低かった、旬間日照時間は、多かっ た。
10月	中旬	期間前半は、昭和基地の北の海上を通過した低気圧の影響で雲が広がることはあったものの、晴の日が多かった、期間後半は、期間の 終わりは気圧の尾根に入り概ね晴れたが、低気圧の接近により雪の日が多かった、18日は、発達した低気圧が接近してふぶきとなり、 ブリザードとなった、旬平均気温は、かなり低かった、旬間日照時間は、多かった。
	下旬	昭和基地の北の海上を通過した低気圧や昭和基地に近づいた低気圧の影響などで雲が広がることもあったが、21日と31日に雪が降った ものの、期間を通じて晴の日が多かった、旬平均気温は低かったが、30日は北の海上の高気圧からの暖かい空気が入って-1.4℃まで気 温が上昇し、10月の日最高気温の高い方からの七位の記録となった、旬間日照時間は、かなり多かった.
2014年	上旬, この† 日照 ^田	中旬は、昭和基地の北の海上を通過した低気圧の影響などにより曇の日が多かった一方で、下旬は期間を通じて晴の日が多かった. とめ、上旬、中旬の旬間日照時間はかなり少なかったが、下旬の旬間日照時間はかなり多かった。月平均気温は、平年並だった。月間 寺間は、平年並だった。
	上旬	期間後半は気圧の尾根に入って晴れた日もあったが、発達した低気圧や昭和基地の北の海上を通過した低気圧の影響などで期間を通じ て曇の日が多く、特に期間前半は曇やふぶきの日が多かった、旬平均気温は、かなり高かった、旬間日照時間は、かなり少なかった.
,	中旬	気圧の尾根に入って晴れた日もあったが、昭和基地の北の海上を通過した低気圧や昭和基地の北の海上が低圧部になった影響などで、 曇の日が多かった、旬平均気温は、低かった、旬間日照時間は、かなり少なかった、
	下旬	昭和基地の北の海上を通過した低気圧の影響などで雲が広がることもあったが、期間を通じて晴の日が多かった。21日の日最高気温は 0.1℃と今夏初めてプラスとなり、2月23日以来のプラスの気温となった。旬平均気温は、低かった。旬間日照時間は、かなり多かった。 た。
	上旬(: 年並†	ま、発達した低気圧が接近して2回ブリザードとなった、中旬、下旬は、雲が広がりやすく、概ね曇の日が多かった、月平均気温は、平 どった、月間日照時間は少なかった。
2014年 12月	上旬	昭和基地付近は、低気圧と気圧の尾根の影響を交互に受けて、天気は概ね周期的に変わった。1日から2日及び6日は、発達した低気圧 が接近してふぶきとなり、ブリザードとなった。1日の日最大風速及び日最大瞬間風速は、2月1日以降で最大となった。日最大風速 は、6月13日と同じく37.9m/sを記録し、12月における日最大風速の第二位の値となった。日最大瞬間風速は46.4m/sを記録し、12月に おける日最大瞬間風速の第二位の値となった。句平均気温は、低かった。句間日照時間は、少なかった。
	中旬	期間のはじめは、発達した低気圧の影響で雪やふぶきとなった.その後は、低気圧の影響などで雲が広がることはあったものの、晴の 日が多かった、旬平均気温は、高かった、旬間日照時間は、平年並だった.
	下旬	気圧の尾根に入ることもあったが、昭和基地の北の海上や昭和基地周辺は低圧部になることが多く、期間後半を中心に雲が広がりやす かった、期間の終わりに雪が降ったが、曇や晴の日が多かった、旬平均気温は、高かった、旬間日照時間は、少なかった、
	上旬, て少り, し 最かっ か	中旬の旬平均気温は低く、下旬の旬平均気温はかなり低かった。日平均気温0℃以上の日数は1日と、1月の平年値である11.5日に比べ なく、期間を通じて低温だった。また、霧日数は6日と、1月の平年値である2.2日に比べて多かった。16日から17日はブリザードとな 7日の日最大風速は41.8m/sを記録し、1月の日最大風速の一位を更新した。また、同日の日最大瞬間風速は51.4m/sを記録し、1月の日 瞬間風速の一位を更新した。17日の日最大風速及び日最大瞬間風速は、第55次隊の記録では最大となった。月平均気温は、かなり低 と、月間日照時間は、多かった。
2015年 1月	上旬	期間中頃までは、昭和基地の北の海上を通過した低気圧の影響などで雲が広がることがあったが、概ね晴れた、期間終わりには湿った 空気が入って、8,9日は霧となり、曇や雪の日が多かった、旬平均気温は、低かった、旬間日照時間は、多かった.
	中旬	期間前半は、昭和基地の北の海上の低気圧周辺の雲に覆われて曇の日もあったが、晴や薄曇の日が多かった。10日から18日にかけて、 発達した低気圧が接近してふぶきとなり、16日から17日はブリザードとなった。低気圧は次第に弱まったが、その後も湿った空気によ り雪や曇の日が多く、期間の終わりには霧が発生した、旬平均気温は、低かった、旬間日照時間は、平年並だった。
	下旬	期間のはじめは昭和基地の西の海上の低気圧の影響で雪や曇りとなり、29日、30日には霧が発生したが、気圧の尾根に入るなど、晴の 日が多かった、旬平均気温は、かなり低かった、旬間日照時間は、多かった、

山本浩嗣ほか

観測種目	使用測器	型式	備考
全天日射量	全天日射計	MS-402F	気象棟前室屋上に設置
日照時間	回転式日照計	MS-094	気象棟南側及び北側に2台設置

表 6 JMA-10 型地上気象観測装置における日照時間, 全天日射量の使用測器. Table 6. Sunshine sensor of JMA-10 type surface observation equipment at Syowa Station.

3. 高層気象観測

3.1. 観測方法と測器

昭和基地は、1995年にWMO等の国際機関により構築された全球気候観測システム (GCOS)の基準高層気象観測網(GUAN)において南極圏内の希少な観測点である. 観測 は高層気象観測指針(気象庁, 2004)に基づき、毎日00,12 UTCの2回行った. ヘリウム ガスを充填した600gゴム気球にRS-06G型GPSゾンデ(明星電気製,以下「GPSゾンデ」) を吊り下げて飛揚し、気球が破裂する上空約30kmまでの気圧、気温、風向・風速及び気温 が-40℃を下回るまでの相対湿度の高度分布を観測した. オゾンの鉛直分布を観測するオゾ ンゾンデを飛揚する際には(4.4.参照)、GPSゾンデの代替観測とした. GPSゾンデの各セ ンサの性能を表7に示す.

飛揚直前には,使用周波数,GPS 衛星数,高度,気温及び湿度に関する点検を行い,各 要素について基準値以内に入っていることを確認した.

GPS ゾンデ信号の受信,計算処理,気象電報作成などには GPS 高層気象観測システム(明 星電気製)を使用した.

観測結果は、国際気象通報式(気象庁、1990)の地上高層実況気象通報式(FM35 TEMP) により、インテルサット衛星経由で全球通信システム(GTS)に通報した.

				1	
ゾンデ形式	観測要素	センサ	測定範囲	分解能	備考
	気圧	GPS高度,気温,湿度により算出	1050~3hPa	0.1hPa	計測精度 地上~100hPa : ±1hPa 100hPa~3hPa : ±0.5hPa
	気温	ビード型ガラスコートサーミスタ (アルミ蒸着加工)	+40∼-90°C	0.1°C	飛揚前点検で精度確認 計測精度 ±0.5℃
RS-06G型 GPSゾンデ	湿度	高分子感湿膜(静電容量変化式)	1~100%RH	0.1%RH	飛揚前点検で精度確認 計測精度 ±7.0%RH
di bi v i	風向	GPSゾンデが受信するGPS衛星信号の受信周 波数が、GPSゾンデとGPS衛星との相対速度	0~360°	0.1°	
	風速	に応じて変化すること(ドップラー効果)を 利用して風成分を測定し算出	0~200m/s	0.1m/s	
	高度	GPSゾンデが受信するGPS衛星信号より幾何 学高度を算出し,ジオポテンシャル高度 (GPM) に変換	-200.0~40000.0m	0.1m	計測精度 ±5.0m

表 7 RS-06G 型 GPS ゾンデの各センサの性能. Table 7. Sensor Performances of RS-06G GPS sonde.

第55次日本南極地域観測隊気象部門報告2014

		年	2014年											2015年	
項目		月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	合計
飛揚回夠	敗		57	64	60	63	60	64	62	61	63	60	61	63	738
定時観泪	則回数		56	62	60	62	60	62	62	60	62	60	62	62	730
欠測回数	数(※1	L)	1	0	1	0	4	0	0	1	1	1	2	1	12
資料欠切	如回数	(※2)	0	0	0	0	0	0	0	0	0	0	0	0	0
再観測[回数		1	2	0	1	1	2	0	1	1	0	0	2	11
_座 到	回数		55	62	59	62	56	62	62	59	61	59	60	61	718
受達	平均	hPa	11.3	11.5	11.3	13.6	12.6	10.5	9.9	10.2	11.9	12.3	12.4	11.9	11.6
※気	平均	km	31.0	31.1	29.6	28.2	27.9	27.5	27.9	28.3	28.2	30.2	31.2	31.1	29.4
3 7	最高	hPa	5.0	5.0	5.0	7.1	6.5	6.0	5.7	5.8	5.9	5.2	5.0	5.0	5.0
一高	最高	km	36.5	35.2	35.0	30.3	30.5	30.7	30.9	31.8	34.1	35.9	36.9	36.9	36.9

表8 昭和基地における高層気象観測状況.

Table 8. The number of observations and attained height of aerological observations at Syowa Station.

※1:観測資料なし又は定時観測のうち到達気圧が500hPa指定気圧面未満であった回数。

※2:定時観測のうち到達気圧が500hPa指定気圧面以上150hPa指定気圧面未満であった回数。

※3: 定時観測のうち到達気圧が150hPa指定気圧面以上の観測について集計。

3.2. 観測経過

第55 次隊として 2014 年 2 月 1 日 00 UTC より 2015 年 1 月 31 日 12 UTC までの観測を行った (表 8). この期間中における欠測回数は, 観測を実施したものの到達気圧が 500 hPa 指定 気圧面未満であった 9 回と, ブリザードによる強風のため観測中止となった 3 回の合計 12 回であった.

南極の低温下でもゴム気球の性能を維持するため、1年を通して予め恒温槽に入れて加温 した気球を観測に使用した.特に、冬期間は、下部成層圏の低温によりゴム気球が硬化して 到達高度が低下することを防ぐため、4月27日00 UTCから11月3日12 UTCの期間は、 ゴム気球を油(航空タービン燃料油のJP-5)に浸したのち乾燥させて使用した(油漬けと呼 ばれる).油漬けの実施期間は成層圏の気温が-68℃を下回る時期を目安とした.

3.3. 観測結果

2014年1月から2015年1月までの主な指定気圧面の高度,気温,風速の月平均値(00 UTC)を表9に示す.また,2014年1月から2015年1月までの主な指定気圧面の月平均気 温と平年値(1981年~2010年)の年変化(00 UTC)を図4に示す.

表9に示す指定気圧面において、2014年1月は70 hPa 指定気圧面から上層で気温が平年 値より低く、40 hPa 及び30 hPa 指定気圧面において月平均気温の低いほうからの第1位を 記録した.2月になると一転して、70 hPa 指定気圧面から上層の気温は平年値より高くなった。 4月には図4においても明らかなように、300 hPa 指定気圧面から下層の気温は平年値より 低く、特に700 hPa から350 hPa 指定気圧面の気温は4月の月平均気温の低いほうからの第 1位を記録した。6月から7月にかけては、ほとんどの指定気圧面において気温が平年値よ り低かった。8月には、250 hPa から700 hPa 指定気圧面にかけての気温が平年値より高くなっ

山本浩嗣ほか

表 9 月別指定気圧面観測値 (00UTC).

Table 9. Monthly summaries of aerological data at standard pressure levels (00UTC).

百日	指定面	2014年													2015年
項目	(hPa)	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月	平均	1月
	850	1216	1152	1142	1109	1159	1139	1086	1116	1140	1117	1165	1120	1138	1188
	800	1685	1618	1603	1566	1616	1590	1534	1562	1587	1567	1624	1587	1595	1654
	700	2698	2627	2603	2553	2608	2576	2511	2538	2560	2548	2617	2595	2586	2663
	600	3838	3764	3728	3663	3725	3686	3612	3645	3663	3655	3737	3731	3704	3803
	500	5149	5074	5022	4931	5004	4957	4875	4920	4930	4927	5024	5038	4988	5115
	400	6698	6621	6550	6425	6511	6452	6361	6421	6421	6426	6541	6581	6501	6664
	350	7591	7515	7434	7290	7381	7314	7219	7288	7281	7292	7417	7471	7374	7559
	300	8594	8521	8430	8267	8360	8281	8184	8262	8249	8265	8401	8471	8357	8565
高度	250	9766	9700	9595	9422	9501	9397	9292	9377	9360	9384	9535	9627	9496	9739
(m)	200	11233	11168	11051	10859	10898	10743	10617	10703	10684	10724	10904	11043	10886	11198
()	175	12119	12054	11930	11721	11735	11548	11401	11481	11465	11518	11722	11898	11716	12079
	150	13145	13080	12945	12714	12698	12476	12301	12372	12360	12430	12667	12890	12673	13099
	125	14362	14295	14145	13884	13829	13567	13356	13418	13409	13501	13782	14070	13802	14308
	100	15855	15783	15600	15307	15201	14885	14633	14687	14684	14801	15140	15528	15177	15702
	70	18252	18171	17043	17563	17340	16058	16643	16601	16705	16868	17363	17800	17366	18185
	50	20526	20432	20138	19669	10351	18877	18509	18560	18602	18820	19513	20156	19430	20465
	40	20520	21934	21590	21054	20663	20135	10737	10707	19860	20152	20080	21680	20803	21988
	30	24006	23876	23460	21034	20003	21743	21317	21381	21496	21907	20909	23670	22583	23958
	850	-8.1	-9.6	-12.3	-14 7	-14.9	-18.1	-20.3	-21.6	-20.4	-19.1	-13.4	-8.8	-15.1	-91
	800	-11.0	-12.2	-14.8	-17.4	-16.4	-19.1	-21.2	-22.1	-22.1	-20.4	-16.0	-11.9	-17.1	-12.2
	700	-17.2	-18.2	-20.6	-23.6	-22.4	-23.6	-25.9	-25.2	-26.5	-24.7	-22.0	-18.5	-22.4	-17.8
	600	-23.7	-24.2	-27.2	-31.2	-29.1	-30.8	-32.4	-30.6	-31.7	-31.0	-28.2	-24.3	-28.7	-23.7
	500	-31.1	-31.5	-34.6	-39.6	-37.5	-39.1	-40.9	-38.1	-39.8	-38.7	-36.0	-32.0	-36.6	-31.1
	400	-41.3	-41.4	-44.1	-49.4	-47.7	-49.5	-50.6	-48.3	-50.1	-48.6	-45.9	-42.2	-46.6	-41.1
	350	-47.6	-47.3	-49.7	-54.3	-53.4	-55.8	-56.3	-54.2	-55.8	-54.4	-52.1	-48.4	-52.4	-47.1
	300	-53.8	-52.2	-54.5	-57.9	-58.2	-61.7	-62.4	-60.6	-61.6	-60.5	-58.1	-54.6	-58.0	-52.7
気温	250	-51.4	-50.9	-53.7	-54.6	-59.6	-66.1	-68.1	-67.2	-68.0	-66.0	-62.7	-57.4	-60.5	-52.3
(°C)	200	-47.0	-46.8	-48.5	-52.5	-58.8	-67.3	-71.8	-72.8	-72.5	-69.5	-64.0	-55.0	-60.5	-47.9
	175	-46.1	-46.1	-48.0	-52.7	-59.3	-67.1	-73.1	-74.8	-74.0	-70.4	-63.8	-53.9	-60.8	-47.4
	150	-45.5	-45.7	-48.2	-53.5	-60.4	-68.2	-74.5	-76.4	-75.7	-71.6	-64.0	-52.8	-61.4	-46.9
	125	-44.9	-45.4	-48.7	-54.5	-62.0	-70.1	-76.3	-78.0	-77.3	-73.3	-64.1	-51.1	-62.1	-46.4
	100	-44.3	-45.0	-49.3	-55.9	-64.5	-72.4	-79.0	-79.8	-78.6	-74.8	-63.4	-48.8	-63.0	-45.2
	70	-42.8	-44.0	-49.9	-58.3	-68.4	-76.6	-82.2	-82.6	-80.4	-74.9	-58.4	-45.1	-63.6	-42.7
	50	-41.2	-43.4	-50.6	-60.5	-71.4	-79.7	-84.8	-84.0	-80.7	-72.4	-50.4	-40.9	-63.3	-40.8
	40	-40.6	-43.0	-51.1	-61.5	-73.2	-81.4	-85.4	-83.7	-80.0	-68.6	-44.4	-38.4	-62.6	-39.9
	30	-39.5	-42.1	-51.1	-62.4	-74.8	-82.7	-85.4	-83.6	-77.4	-60.5	-38.0	-35.2	-61.1	-38.2
	850	7.3	10.6	9.3	9.9	10.2	9.5	10.2	10.2	11.4	6.1	6.8	9.6	9.3	5.1
	800	7.3	8.4	7.2	8.0	10.6	7.7	8.6	10.0	10.7	5.5	6.2	9.1	8.3	5.6
	700	6.9	7.5	6.9	7.5	10.8	6.5	7.8	9.8	10.1	5.9	5.3	8.1	7.8	5.4
	600	6.9	7.7	7.2	7.8	12.5	7.6	8.8	11.9	8.8	6.6	5.3	7.8	8.2	5.8
	500	8.7	8.6	8.6	10.0	15.5	9.0	9.5	15.2	9.7	7.8	5.8	8.8	9.8	7.3
	400	10.2	12.8	11.2	12.8	19.2	12.4	11.5	17.9	11.2	11.0	8.0	11.8	12.5	10.3
	350	11.3	14.8	12.4	14.7	21.1	13.5	12.9	18.6	13.4	12.9	9.5	13.9	14.1	12.7
	300	11.9	14.3	15.6	14.7	19.9	14.0	14.2	19.7	14.8	15.4	11.0	15.0	15.0	14.1
風速	250	8.4	12.9	14.1	11.6	18.1	12.3	13.3	20.1	15.6	15.0	11.7	12.3	13.8	11.8
(m/s)	200	5.7	9.5	12.7	11.7	15.4	12.0	11.2	21.0	14.3	15.7	11.3	8.8	12.4	7.8
	175	5.4	9.4	12.9	12.5	14.4	11.6	11.0	21.6	13.9	15.3	11.9	8.6	12.4	7.6
	150	4.9	8.4	12.7	13.5	14.2	11.9	12.2	21.2	13.7	15.5	13.0	8.4	12.5	6.8
	125	4.5	9.0	13.4	14.5	15.3	13.1	13.0	23.0	15.0	17.0	15.0	9.2	13.5	6.5
	100	4.2	7.9	13.2	15.7	15.7	16.3	15.5	25.0	16.9	18.7	18.0	10.0	14.8	5.7
	70	4.2	6.7	12.5	18.5	19.0	20.4	19.7	29.8	20.5	22.7	22.5	9.7	17.2	4.7
	50	3.5	6.1	12.3	20.9	23.4	25.9	25.1	34.3	24.7	26.8	27.4	11.4	20.2	4.2
	40	4.3	4.6	12.1	23.0	24.9	27.5	27.2	37.5	27.8	30.0	29.4	10.7	21.6	4.0
	30	4.5	4.1	12.9	24.5	29.4	33.2	31.0	40.7	32.1	34.6	31.2	11.0	24.1	5.9

たが、200 hPa 指定気圧面から上層では引き続き気温が平年値より低く経過した。200 hPa 指 定気圧面から上層では、10 月まで気温がおおむね平年値より低い状態が続いた。11 月にな ると 50 hPa 指定気圧面から下層では気温が平年値と同じか平年値より低かったが、40 hPa 指定気圧面から上層では気温が平年値より高くなった。

次に、2014年1月から2015年1月までの上空の気温の時間高度断面の変化を図5に示す.

⁷⁰⁰hPa-200hPa, (right) 100hPa-30hPa.

また,月平均気温及び風の東西・南北成分の平均値及び平年偏差の時間高度断面図を図6に 示す。

下部成層圏では気温-70℃以下の領域が明瞭に現れたのは5月上旬からで、時間の経過と 共に気温は下がり,6月頃から10月頃にかけておおむね200hPaより上層で-70℃以下となっ た.また、下部成層圏の100hPaから10hPaにおいて、5月下旬から9月中旬までおおむね -80℃以下の気温となった、4月から5月にかけて南風成分が大きくなった(図6)ことに 伴い、図5における4月中旬の300hPaから下層における気温が急激に低下したと考える. また、8月から9月にかけて北風成分が大きくなった(図6)ことに伴い、図5における8 月下旬の200hPaから下層における気温が急激に上昇したと考える.

成層圏突然昇温は極夜明けの時期に観測されるが、WMOへの通報基準である「最大上昇

図 5 昭和基地上空の気温の時間高度断面図(2014年1月~2015年1月). Fig. 5. Time-height cross section of upper air temperature (Jan. 2014–Jan. 2015).

温度が 25℃ /7 日以上の気温上昇」は、9 月上旬から 11 月中旬にかけて 15 事象を観測した. 特に、10 hPa 指定気圧面において 9 月 17 日から 9 月 20 日にかけて 49.8℃の昇温となり、 15 hPa 指定気圧面において 6 9 月 17 日から 9 月 22 日にかけて 44.1℃の昇温となった.

4. オゾン観測

4.1. 概要

オゾン観測は、ドブソンオゾン分光光度計を用いた全量・反転(高度分布)観測, ECC-06G(E)型オゾンゾンデを用いたオゾン高度分布観測(以下「オゾンゾンデ観測」),及び 地上オゾン濃度観測装置を用いた地上オゾン濃度の連続観測を行った.全量・反転観測及び オゾンゾンデ観測は気象棟で,地上オゾン濃度観測は清浄大気観測室にて観測を行った.オ ゾン観測で使用した観測機材を表 10 に示す.

オゾン全量観測結果、オゾン反転観測結果及びオゾンゾンデ観測結果は、電子メールで毎 月気象庁へ報告した.これらの観測データは、気象庁からWMO世界オゾン紫外線データ センター(WOUDC)へ送られた.また、オゾンホール時期(8月から12月)には、WMO 事務局の要請により気象庁経由でオゾン全量及びオゾンゾンデ観測結果を数日ごとにWMO 事務局へ報告した.報告した観測結果は、WMO Antarctic Ozone Bulletin としてまとめられ、 WMOのウェブサイトで公開された.また、オゾン全量データは、観測を休止した極夜期間 を除き、CREX報(気象庁、1997)によりGTS 回線を通じて毎日1回通報した.

Fig. 6. Annual variations in upper air temperature (°C) and upper wind components (m/s) (left), normal values (1981–2010)(middle), and anomalies (right).

山本浩嗣ほか

観測項目	使用測器等	型式及び 測器番号		単位及び 測定範囲	備考				
オゾン全量・ 反転観測	ドブソン オゾン分光 光度計	Beck No.119	:	m atm-cm	石英プリズムを使って太陽光をスペクトルに分 光し,測定に適切な2種の波長の光を取り出し強 度比を測定する				
			気圧	1050~3hPa					
	ラジオ		気温	+40∼-90°C					
	リンス	RS-06G(E)	湿度	1~100%RH	RS-06G 型 GPS ゾンデと同様(表 6 参照)				
	, , ,		風向	0~360°					
			風速 0~200m/s						
オソン ゾンデ 観測	オゾン センサ	ECC-1Z		mPa	飛揚前に、ポンプ流量補正係数を測定し、点検装 置で性能を確認 反応液(ヨウ化カリウム溶液)				
	気球	2000g			ゴム気球 ※標準浮力:3200g				
	巻下器 又は吊紐				クレモナ製 50m 紐使用				
地上オゾン 濃度観測	オゾン 濃度計	EBARA EG3000F	0	\sim 200ppbv	紫外線吸収法,最小感度 0.1ppbv, 15 秒サンプリング				

表 10 昭和基地におけるオゾン観測器材. Table 10. Sensors for ozone observations at Syowa Station.

地上オゾン濃度の観測結果も同様に、電子メールで毎月気象庁へ報告し、定められた書式 により、気象庁から WMO 温室効果ガス世界資料センター(WDCGG)へ送られた.

4.2. オゾン全量観測

4.2.1. 観測方法と測器

オゾン観測指針 オゾン全量・反転観測編(気象庁, 1991)に準じ,ドブソンオゾン分光 光度計(Beck119)を用いて,太陽の直射光・天頂散乱光及び月の直射光による観測を行った. 測器の保護のため,降雪や強風時は観測を実施しなかった.

太陽光による観測は北中時と午前・午後各2回の毎日5回実施を基本とし、午前・午後の 観測時刻は、オゾン層を通過する太陽光線の垂直路程に対する相対的な路程(以下「µ」) により決定した.太陽高度が高い時期については、 $\mu = 1.5, 2.5, 3.5$ の時刻にAD波長組(A 波長組:平均波長305.5 nm と325.0 nm,D波長組:平均波長317.5 nm と339.9 nm)を、太陽 高度が低い時期については、 $\mu = 4.5, 5.5, 6.5$ の時刻にCD波長組(C波長組:平均波長 311.5 nm と332.4 nm,D波長組:平均波長317.5 nm と339.9 nm)を、それぞれ用いて観測を 行った.太陽高度によっては、1日5回の観測をAD波長組とCD波長組の2つの波長組を 用いて実施するが、この場合は太陽北中時の μ を基準として、 μ が小さい時刻の観測を優先 して実施した.(例えば、北中時に $\mu = 2.5$ の観測を行う場合、午前・午後の観測はAD波 長組による $\mu = 3.5$,CD波長組による $\mu = 4.5$ の観測を実施した.)また、 $4.5 < \mu \le 5.5$ の 時期は、1日3回(北中時に $\mu = 5.5$,午前・午後に $\mu = 6.5$ の観測を実施)、 $5.5 < \mu \le 6.5$

· · · ·														
2	014 年										2	015 年		
	2月	3月	4 月	5 月	6月	7月	8月	9月	10 月	11 月	12 月	1月	合計	
全量観測日数	22	25	21	2			19	26	20	20	20	20	221	
(太陽光)*1	22	25	21	3	_	-	10	20		50	20		231	
全量観測日数		1	1	4	1	5	6	0	5				22	
(月光)*1	-	1	1	4	1		0	0	5	-	-	-	23	
反転観測日数	1	0						5	14	0	0	11	40	
(ロング)*2	1	0	-	-	-	-	-	5	14	9	0	11	40	
反転観測日数	0	0	1				0	6	1		0	0	10	
(ショート)*2	0	0	1	-	-	-	0	0	1	2	0	0	10	

表 11 昭和基地における月別オゾン全量観測及びオゾン反転観測日数.

Table 11. Days of total ozone observations and ozone Umkehr observations with the Dobson spectrophotometer at Syowa Station.

注) 「-」はオゾン全量観測またはオゾン反転観測が実施不可能な月。

*1:同日に太陽光と月光があった場合の全量観測日数は、それぞれの日数に加算。日代表値を取らない 観測日も含む。

*2:同日にロングとショートがあった場合の反転観測日数は、ロングの日数に加算。

の時期は、1日1回(北中時に μ = 6.5の観測を実施)の観測を実施した.太陽北中時の μ が6.5を上回る時期については、 $\mu \leq 7.0$ の範囲で CD 波長組の天頂散乱光観測のみ実施した. オゾン全量の測定限界となる μ の値は、測器によって異なる上にオゾン全量やエーロゾル全 量の多寡によっても変化するため、現地で数時間にわたり太陽直射光の連続観測を行うこと で決定した.

太陽光による観測ができない冬期には,月齢が8から23の範囲でµが小さい時刻を中心 にAD波長組を用いて月光による観測を行った.その前後の期間には,比較観測として太陽 光による観測と月光による観測を同日に行い,月光による観測結果の品質管理を行った.

4.2.2. 観測経過

第55次隊にて国内で機器調整を実施したドブソンオゾン分光光度計(Beck119)を持ち込み,2014年1月7日および10日に第52次隊から第54次隊まで使用していたドブソンオゾン分光光度計(Beck122)との比較観測を実施して測器の精度の確認を行った.その結果,直射光比較観測のデータに異常がないことが確認できたことから,2014年1月15日からBeck122に代えてBeck119を使用した.このBeck119は第54次隊までのBeck122同様,改良型自動制御方式(宮川,2007)により制御,観測を行う装置である.

越冬中に測器障害はなく, 順調に観測を行った.

月別オゾン全量観測日数を表 11 に示す.5月及び8月は太陽高度角が低いため観測可能 日数が少ない.6月から7月は極夜期のため月光観測のみを行ったが,観測可能な月齢やµ の条件が揃う日数は月に10日間程度であり,実際の観測日は天候によりさらに少なくなっ

た.

4.2.3. 観測結果

4.2.1. で述べたとおり,観測条件が許す限り,異なる光線(太陽の直射光・天頂散乱光及 び月光直射光)・波長組を用いて1日に複数回のオゾン全量観測を実施し,オゾン観測指針 オゾン全量・反転観測編(気象庁,1991)に定める観測資料の優先順位に従い,その日に行 われた全ての観測の中で最も観測精度が高いと判断される観測値が日代表値となる.2014 年1月から2015年1月のオゾン全量日代表値の年変化を図7に示す.昭和基地上空のオゾ ン全量は、8月下旬から11月中旬までオゾンホールの目安となる220m atm-cmを下回り, 10月7日に2014年の最小値である139m atm-cmを記録した.この期間,大気の流れによっ てオゾンホールが変形,移動しながら,昭和基地上空を覆ったり離れたりしたため,オゾン 全量が大きく変動した.11月中旬以降は、オゾンホールが昭和基地上空から離れたのち消 減したため、オゾン全量が回復した.

昭和基地における月平均オゾン全量の経年変化を図8に示す.1日しか観測値が得られな

図8 昭和基地における月平均オゾン全量の経年変化(1966年2月~2015年1月). Fig. 8. Time series of monthly mean total ozone at Syowa Station (Feb. 1966–Jan. 2015).

かった6月を除くと、いずれの月も参照値(1994年から2008年の平均)を上回った。特に 4月の月平均オゾン全量(297matm-cm)は過去5番目、5月の月平均オゾン全量(304m atm-cm)は過去4番目に多かった。

4.3. オゾン反転観測

4.3.1. 観測方法と測器

オゾン観測指針 オゾン全量・反転観測編(気象庁,1991)に準じ,ドブソンオゾン分光 光度計(Beck119)を用いて,天頂散乱光のACD 波長組を連続して観測した. 観測は,ロ ング反転観測では太陽天頂角が 60°から 90°,ショート反転観測では 80°から 89°の範囲につ いて,指定された天頂角の晴天天頂光観測値が得られた時に成立する. 観測結果の即時的な 品質管理を行うため,天頂雲検出器(宮川・上野,2008)を測器に取り付けて運用した.

4.3.2. 観測経過

測器の状況は4.2.2. に記述したとおりであり、順調に観測を行った.

月別反転観測日数と観測種別ごとの内訳を表 11 に示す.太陽高度角が低い(または太陽 が昇らない)4月下旬から8月中旬及び太陽が沈まない12月上旬から1月上旬は,オゾン の高度分布を算出するのに必要なデータセットが得られないため観測を行わなかった.また, 2月から4月は天候の影響で成立した観測が少なかった.観測が可能な期間では午前と午後 で1日2回の観測が可能であり,午前に良好なデータを取得できた場合で,午後にオゾン全 量観測の観測限界調査を行った日を除き,可能な限り観測を行った. 4.3.3. 観測結果

2014 年 1 月から 2015 年 1 月のオゾン反転観測(ロング反転観測)による気層別オゾン量 を図 9 に示す. 2014 年 4 月から 8 月はロング反転観測データが得られなかったため表示し ていない.計算アルゴリズムは、Petropavlovskikh *et al.* (2005)の手法を用いている.また、 データの品質管理のために、準器との比較観測に基づく測器の特性評価から測定値を補正し ている(Miyagawa *et al.*, 2009).

図 9 昭和基地における反転観測による気層別オゾン量(2014年1月~ 2015年1月).

Fig. 9. Amount of ozone in the selected layers obtained by Umkehr observations at Syowa Station (Jan.2014–Jan.2015).

第2,3,4,5層(253-15.8hPa)のオゾン量は、極夜期前(2014年1月から2月)と比較して、9月中旬から11月上旬にかけて少ない状態で推移した。11月中旬以降は第5層では極夜期前より大きい値が観測され、第2,3,4,5層は2015年1月中旬までに極夜期前のレベルまで回復した。第1層(surfaceから253hPa)は9月中旬から11月上旬にかけてばらつきが大きく、季節変化は認められなかった。第7,8,9,10層(7.92hPaより上層)のオゾン量は期間を通して第2,3,4,5層と比較して明瞭な季節変化はみられなかった。

4.4. オゾンゾンデ観測

4.4.1. 観測方法と測器

オゾンゾンデ観測指針 [ECC 型編](気象庁, 2010)に準じ, ECC 型オゾンゾンデを気球 に吊り下げ,上空約35kmまでのオゾン分圧,気圧,気温,気温が-40℃を下回るまでの湿 度,風向及び風速の高度分布を観測した.オゾンゾンデは高層気象観測用のGPS ゾンデと オゾン測定用のオゾンセンサを組み合わせて使用した.大気中に含まれるオゾンと反応液(ヨ ウ化カリウム溶液)との化学反応の際に生ずる反応電流はオゾン量に比例するため,それを 測ることによりオゾン量を求めている.

オゾンゾンデの信号を受信する地上設備は、高層気象観測と同じものを使用した.オゾン ゾンデ飛揚前には、ポンプ効率測定装置(中野・岩野、2008)を用いて気圧に対するポンプ 流量の補正係数(ポンプ効率修正係数)を求め、さらに、オゾンゾンデ点検装置を用いて性 能の確認を行った.気球は 2000gのゴム気球を使用し、ヘリウムガスを充填して浮力錘浮 力を 3000g(巻下器使用時は 3200g)とした.また、5 月から 11 月の到達高度が低くなる 期間は、高層気象観測と同様に気球の油漬け処理を行った.さらに、上空で温度が-80℃を 下回る 5 月から 10 月には、反応液の凍結を防ぐために、第 54 次隊に引き続き内部にウォー ターバッグを入れて保温する、オゾンセンサ内部にアルミシートを入れる、電池収納部の隙 間に蓋をする低温対策を行った.

観測は原則として,風が弱く晴天の日を選び,12 UTC の高層気象観測を兼ねて行った. 観測回数は各月2回以上とし,オゾンホール形成期及びその前後(7月から12月)には飛 揚間隔を短くした.

4.4.2. 観測経過

第55次隊ではオゾンゾンデを46回飛揚した.オゾンゾンデの観測状況を表12に示す. おおむね順調にデータを取得することができたが,46回の飛揚のうち最終高度が圏界面に 達しなかった1回については,月平均値算出等の統計処理やWOUDCへのデータ報告には 利用していない.

4.4.3. 観測結果

2014年2月から2015年1月までのオゾン分圧の月別高度分布を図10に示す.オゾン分

山本浩嗣ほか

	年	2													
	月	2 月		3月			4 月		5 月	6月			7 月		
日	観測	8	4.6	5	8.2	1	4.7	9	18.0	2	43.6		1	15.9	
	終了	16	5.6	18	6.1	12	9.7	22	8.5	11	16.0		16	7.8	
	気圧									27	507.5	*	22	9.0	
	(hPa)												27	20.7	
	年	2	014 年										2	015 年	
	月		8月	9月		10 月		11 月		12 月			1月		
日	観測	1	5.7	1	6.2	1	6.7	3	7.5	3	4.7		2	6.1	
	終了	5	11.2	10	5.8	6	8.7	7	7.6	8	4.7		10	11.4	
	気圧	8	8.8	14	14.6	11	13.7	12	7.4	14	4.8		14	4.5	
	(hPa)	16	7.8	18	10.2	16	11.5	17	35.3	28	4.6				
		21	6.3	22	18.4	22	6.2	21	5.3						
		26	10.2	26	10.2	27	7.4	26	5.2						

表 12 昭和基地におけるオゾンゾンデ観測状況. Table 12. Dates of observations and attained heights of ozonesonde at Syowa Station.

*:到達高度が圏界面に達しなかったため、統計不採用.

Eは通常,100 hPa から 30 hPa 付近で最大となる高度分布を示す.この高度で2月から8月 に10 mPa 以上となっていたオゾン分圧が、9月から減少し、オゾンホールが最も拡大した 10月は5 mPa を下回るほど減少した.11月にかけても高度150 hPa から70 hPa 付近でオゾ ンホールの影響によるオゾンの減少が観測された.

4.5. 地上オゾン濃度観測

4.5.1. 観測方法と測器

第38次隊(1997年1月)より開始した地上オゾン濃度観測(江崎ほか,2000)を引き続 き行った. 観測は,第49次隊より基地の中で主風向の風上側となる北東側に位置する清浄 大気観測室で行っており(図1⑥の位置),同建物主風向側(北東側)の地上から4mの高 さに設置してある大気取入口からテフロン配管を通して大容量ポンプで地上付近の大気を吸 引し,さらにオゾン濃度計内のポンプにより流量毎分1.5リットルでオゾン濃度計に取り入 れて,地上付近の大気に含まれる微量のオゾンを紫外線吸収方式のオゾン濃度計(荏原実業 社製 EG-3000F)で15秒ごとに測定した.データは収録用 PC 内のハードディスク及び外付 けハードディスクに収録した.

オゾン濃度計は1年ごとに国内での点検や較正が必要なため4台で運用しており,昭和基 地には観測現用器と予備器の2台を保有し,残りの2台は帰国隊が国内に持ち帰り,次の隊 がオーバーホール及び気象庁本庁での較正を行った後,再び昭和基地に持ち込んでいる.第

図 10 昭和基地におけるオゾン分圧の高度分布(2014年2月~2015年1月).太実線は月平均オゾン高度分布.細実線は1994~2008年の累年平均オゾン高度分布.破線はオゾンホールが明瞭に現れる以前の月平均値(1968~1980年平均値)[9~11月のみ]. 横細実線は1994~2008年累年平均オゾン高度分布の標準偏差.

Fig. 10. Vertical distribution of ozone partial pressure observed by ozonesonde at Syowa Station (Feb.2014–Jan.2015). Thick lines show monthly mean profiles. Thin Lines show normal profiles (1994–2008). Broken lines show monthly mean profiles before the first appearance of the ozone hole (1968–1980). Side thin lines show standard deviation on monthly profiles (1994–2008). 55 次隊では,第51 次隊で更新した荏原実業社製のオゾン濃度計(佐々木ほか,2015)2 台を持ち込み,第54 次隊が昭和基地に持ち込んで使用していた Dylec 社製の2 台のオゾン濃度計との相互比較を行った後に,観測に使用した.

4.5.2. 観測経過

2013 年 12 月 19 日から 2014 年 2 月 1 日まで,第 55 次隊で持ち込んだオゾン濃度計 2 台 (EBARA EG-3000F 測器番号:9020075,9020077) と第 54 次隊で使用したオゾン濃度計 2 台 (Dylec MODEL1100 測器番号:A-1781-1,A-1781-2) に,オゾン発生器により発生させた一 定のオゾン濃度ガスを各濃度計に流して出力を比較する相互比較及び実際に観測する大気を 流して各濃度計の出力を比較する比較観測を行った.その結果,濃度計間の出力の差が± 2 ppb 以内であることを確認したため、2 月 1 日以降は 9020077 を現用器とした.7月 11 日 から 12 日にかけて 9020075 と 9020077 との相互比較及び比較観測を行い,濃度計間の出力 の差が± 2 ppb 以内であることを確認した.7月 12 日から 9 月 1 日にかけて 9020075 と 9020077 の並行運用を実施し、8 月 1 日から 9020075 を現用器とし、9 月 1 日に 9020077 に よる観測を終了した.

12月30日から31日にかけて年1回の保守として、観測装置内の全てのテフロン配管、 ドレンポット、大気吸引フィルター、大容量ポンプダイヤフラムの交換を実施した.

年間を通した保守として、オゾン濃度計手前のテフロンフィルターを毎月確認し、汚れて いる場合は交換した(2月から10月は汚れることがなく、交換は行わなかったが、11月以 降は汚れが顕著になったため毎月交換した).また、ブリザード後、大気取入口に雪が詰まっ た場合には、大気取入口を交換し、取り外した大気取入口は洗浄して予備として保管した. ブリザードによる雪詰まりの影響を受けた期間は欠測とした.また、基地内の汚染の影響を 受けた場合、基本的にはオゾン濃度が下がり観測値(15秒値)のばらつき(変動)が通常 1ppb程度のところ3ppb以上と大きくなる.観測値のばらつきが大きく、その原因が風向・ 風速、汚染源と清浄大気観測室の位置関係を勘案して汚染の影響であると判断した場合は欠 測とし、時別値の計算から除く品質管理を行った.

4.5.3. 観測結果

2014年2月から2015年1月までの地上オゾン濃度時別値を図11に示す.時別値は,4.5.2.で 述べた品質管理を経た全ての15秒値を前1時間分平均して求めた.

昭和基地における地上オゾン濃度は、例年、夏季に濃度が低く、冬季に高くなるという季節変化を示し、極夜明けから2月頃にかけてデータのばらつきが大きくなる傾向にあり、第55次隊でも同様の傾向が見られた.また、南極や北極の高緯度地域では、極夜明けの春季に大気中の海塩粒子、積雪、海氷中の海塩成分から放出された海塩起源の物質の影響で、地上付近のオゾンが分解され、その濃度が急減することが知られている(青木、1997;江崎ほか、2013; Hara *et al.*, 2018). 第55次隊でも7月から9月にかけて同様の現象が観測された.

^{~2015} 平1月).

4.6. 2014 年のオゾンホールの特徴

気象庁(2015)によると、2014年のオゾンホールは、例年と同様に8月に発生したのち9 月初めに急速に拡大し、9月後半には一時的に縮小したものの10月1日に2014年の最大面 積である2,340万km²(南極大陸の約1.7倍)まで広がった。その後、過去(2004~2013年) の平均と同程度のペースで縮小し、12月初めに消滅した。オゾン欠損量は10月2日に年最 大値である7,850万トン、最低オゾン全量は9月30日に年最低値である114m atm-cm となっ た。2014年の最大面積は、過去(2004~2013年)の平均値(2,460万km²)と同程度だった。 2014年のオゾン欠損量の年最大値は、過去(2004~2013年)の平均値(8,280万トン)と同 程度だった。

5. 地上日射放射観測

5.1. 概要

地上日射放射観測はWMOの基準地上放射観測網(BSRN: Baseline Surface Radiation Network)の観測点としての条件を満たすため、従来の全天日射量、直達日射量及び大気混 濁度に加え、第32次隊(1991年)より散乱日射量、下向き赤外放射量(長波長放射量)及 び紫外域日射量の観測を開始し、第39次隊(1998年)より毎秒サンプリングでの反射日射量、 上向き赤外放射量(長波長放射量)、反射紫外域日射量及び放射収支量の観測を開始した. これに伴い、第40次隊(1999年)より大気混濁度を除いて、データサンプリングを毎秒に

Fig. 11. Time series of hourly mean surface ozone concentrations at Syowa Station (Feb.2014–Jan.2015).

変更した.大気混濁度観測については,第52次隊(2011年)より測器を変更した.第55 隊ではこれらの観測システムにより引き続き観測を行った.

波長別紫外域日射観測は寒冷地対策を施したブリューワー分光光度計 MK Ⅲ(伊藤·宮川, 2001)を用いて行った. 第 55 次隊で観測に用いた同 MK Ⅲ(168 号機)は第 54 次隊で持ち込んだものである.

観測の種類と使用した測器を表 13 に示す.

;	観測項目	使用測器	感部型式	測定範	囲	測器番号	観測	サンプリング 問回
	全天日射量	精密全天日射計	KIPP&ZONEN CM21T	305~2800	nm	980520	0.01 MJ/m ²	1秒
	直達日射量 (大気混濁 度)	直達日射計 太陽追尾装置	KIPP&ZONEN CH1	200~4000	nm	060645	0.01 MJ/m ²	1秒
下向き 日射 放射	散乱日射量	精密全天日射計 太陽追尾装置 遮蔽球	KIPP&ZONEN CM21T	305~2800	nm	000738 990574	観測 サンプリ 最小単位 間隔 20 0.01 MJ/m ² 1秒 15 MJ/m^2 15 MJ/m^2 16 MJ/m^2 17 MJ/m^2 19 0.01 kJ/m^2 1秒 10 0.01 kJ/m^2 1秒 10 0.01 kJ/m^2 1秒 10 0.01 kJ/m^2 1秒 11 0.01 kJ/m^2 1秒 12 0.01 kJ/m^2 1秒 55 0.01 12 MJ/m^2 059 $60 $ 8 1μ W/m ² 1時	1秒
	紫外域日射量	全天型 紫外域日射計	KIPP&ZONEN UVS-AB-T	280~315	nm	030619	0.01 kJ/m ²	1秒
	下向き 赤外放射量 (長波長放射量)	精密赤外放射計 太陽追尾装置 遮蔽球	KIPP&ZONEN CG4	4.5~42	μ m	990001 050798 030642	0.01 MJ/m ²	観測 サンプリング 観測 田子 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
	反射日射量	精密全天日射計 遮蔽リング	KIPP&ZONEN CM21T	305~2800	nm	970397	0.01 MJ/m ²	1秒
上向き 日射	反射紫外域日 射量	全 天 型 紫 外 域 日 射 計 遮 蔽 リング	KIPP&ZONEN UVS-AB-T	280~315	nm	測器番号 観測 最小単位 1 980520 0.01 MJ/m ² 1 060645 0.01 1 060645 0.01 1 000738 0.01 1 000738 0.01 1 030619 0.01 1 030619 0.01 1 030619 0.01 1 030619 0.01 050798 MJ/m^2 030642 0.01 MJ/m^2 0.01 <tr< td=""><td>1秒</td></tr<>	1秒	
放射	上向き 赤外放射量 (長波長放射量)	精密赤外放射計	KIPP&ZONEN CG4	4.5~42	μ m	010565 030642 050798	0.01 MJ/m ²	1秒
その他	大気混濁度	サンフォトメータ 太陽追尾装置	PMOD PFR	368 412 500 862	nm	08-N-059		60 秒
	波長別 紫外域日射量	ブリューワー 分光光度計	SCI-TEC BREWER MKIII	290~325	nm	#168	$1 \ \mu \ W/m^2$	1 時間

表 13 昭和基地における地上日射放射観測の種類と使用測器. Table 13. Instruments for surface radiation observations at Syowa Station.

5.2. 下向き日射放射観測

5.2.1. 観測方法と測器

観測場所は気象棟前室屋上及びその北側に棟続きで隣接する観測デッキ上である(図1① の位置).データは1秒ごとにデータロガーで収集し,測器の入射窓及びドーム清掃の時間 帯などに記録された異常データについては手動で欠測処理を行った(間宮ほか,2012).観 測項目及び特記事項は以下のとおりである.

(a) 精密全天日射計を用いた全天日射量の連続観測

(b) 直達日射計を用いた直達日射量の連続観測

直達日射計感部は太陽追尾装置に搭載した.

(c) 精密全天日射計を用いた散乱日射量の連続観測

太陽追尾装置に搭載した精密全天日射計と遮蔽球により観測した.遮蔽球は直達日射計の 開口角と同等の視直径の黒色球体で,太陽追尾装置に搭載することにより太陽からの直射光 を遮り,散乱光のみを観測するための装置である.

(d) 全天型紫外域日射計を用いた紫外域日射量の連続観測

全天型紫外域日射計は、測定波長に依存した測器感度の経時変化が指摘されている(柴田 ほか、2000;伊藤、2005). このため、データの処理にあたっては、基準となるブリューワー 分光光度計による紫外域日射量観測値との比較により、測器定数を月ごとに求め、補正する 方法(柴田ほか、2000)をとった.

(e) 精密赤外放射計を用いた下向き赤外放射量(長波長放射量)の連続観測

散乱日射量の連続観測と同様に太陽からの直射光を遮るために,太陽追尾装置に搭載した 精密赤外放射計と遮蔽球により観測した.

5.2.2. 観測経過

2014年2月1日に第54次隊から観測を引き継ぎ,第55隊のデータ収録を開始した.各 測器,データロガー,太陽追尾装置について,オーバーホールや較正のため,適宜交換を実 施した.10月21日から散乱日射量の観測値に異常が出るようになったため,11月6日に当 該測器を交換し,異常値について欠測処理を行った.その他は,おおむね順調であった.

5.2.3. 観測結果

下向き日射放射の各量(全天日射量,直達日射量,散乱日射量,下向き赤外放射量及び紫 外域日射量)の日積算値の年変化を図 12 に示す.

2014年の下向き日射放射観測は、各観測とも例年と同様な年変化であった.全天日射量 は太陽高度が低くなるほど減少し、太陽が昇らない冬季には0MJ/m²となっているが、下向 き赤外放射量については、冬季においてもおおむね10MJ/m²以上の放射量が観測された. これは大気分子や雲からの放射によるものである.紫外域日射量については、全天日射量と 同様の年変化の傾向が見られるが、紫外域日射量はオゾン全量の増減とも対応があり、11 月上旬頃に日積算値が減少しているのは、図7に見られるオゾン全量の増加に対応している.

図 12 昭和基地における下向き日射放射量日積算値の年変化(2014年1 月~2015年1月). (a) 全天日射量, (b) 直達日射量, (c) 散乱日射量, (d) 下向き赤外放射量, (e) 紫外域日射量.

Fig. 12. Annual variations in daily integrated values of downward radiation components at Syowa Station (Jan.2014–Jan.2015). (a) Daily total global solar radiation (Composite), (b) Daily total direct solar radiation, (c) Daily total diffused solar radiation, (d) Daily total downward infrared radiation, (e) Daily total UV-B radiation.

5.3. 上向き日射放射観測

5.3.1. 観測方法と測器

観測場所は観測棟から東北東約120mの積雪上であり,第46次隊により整備された観測 架台を第55隊でも引き続き使用した(図1⑤の位置).データは下向き日射放射観測と同じ く、1秒ごとにデータロガーで収集し、測器のドーム清掃の時間帯などに記録された異常デー タについては手動で欠測処理を行った(間宮ほか,2012). 観測項目及び特記事項は以下の とおりである.

(a) 精密全天日射計を用いた反射日射量の連続観測

太陽高度角が低い時に測器感部への太陽直射光の入射を防ぐため,第45次隊から使用している遮蔽リングを引き続き使用して観測した.

(b) 全天型紫外域日射計を用いた反射紫外域日射量の連続観測

反射日射量の観測と同様に,第47次隊が使用を開始した遮蔽リングを引き続き使用して 観測した.データ処理は,下向き紫外域日射量の観測と同様に行った.

(c) 精密赤外放射計を用いた上向き赤外放射量(長波長放射量)の連続観測

5.3.2. 観測経過

2014年2月1日に第54次隊から観測を引き継ぎ、第55次隊のデータ収録を開始した.

上向き日射放射観測は、可視域及び紫外域では地表面からの反射量、赤外域では地表面から射出される放射量を観測するにあたり、観測領域内の地表面を覆う雪面の状態の影響を受けやすいことから、局所的な影響を除いて代表性を確保するため、雪面から測器受光面の距離を確保することとし、その距離ができるだけ一定となるように測器の高さを調整することとしている。測器の設置高については、メンテナンスの容易性等から1.5m前後を目安とし、第55次隊の越冬中は観測領域内の積雪の深さの変化が少なく、常に雪面から測器受光面の距離は1-2m以内であったため、測器高の調整を行うことは無かった。測器高の調整し行わなかったが、測器高の調整の作業手順を次隊に引き継ぐため、1月10日に実際に測器高の調整作業を手順に従い実施した。

全天型紫外域日射計の測器感度の監視のため,2014年7月及び2015年1月に全天型紫外 域日射計用の外部標準ランプ点検装置を用いて点検を実施した結果,測器感度に変化は見ら れなかった.

5.3.3. 観測結果

上向き日射放射量日積算値の年変化を図 13 に示す.

2014年の上向き日射放射観測は、下向き日射放射観測と同じく例年と同様な年変化であった. 全天日射量に対する反射日射量の割合は、夏季で7割程度であるが、太陽高度が低くなるほどこの割合は増加し、9割以上に達した期間もあった. 上向き赤外放射量は下向き赤外放射量と比較して日ごとのばらつきは小さいが、冬季は若干ばらつきが大きくなった. 反射紫外域日射量については、下向きの紫外域日射量と同様、太陽高度の変化及びオゾン全量の変化に対応した年変化傾向を示し、11月上旬頃に日積算値が減少している. これも図7のオゾン全量の増加に対応している.

図 13 昭和基地における上向き日射放射量日積算値の年変化 (2014年1 月~2015年1月). (a) 反射日射量, (b) 上向き赤外放射量, (c) 反射 紫外域日射量.

Fig. 13. Annual variations in daily integrated values of surface upward radiation components at Syowa Station (Jan.2014–Jan.2015). (a) Daily total reflected solar radiation, (b) Daily total upward infrared radiation, (c) Daily total reflected UV-B radiation.

5.4. 波長別紫外域日射観測

5.4.1. 観測方法と測器

紫外域日射観測指針(気象庁,1993)に準じ,ブリューワー分光光度計 MK III 168 号機 を用いて,290 nmから325 nm(UV-B 領域と,UV-A 領域の一部の波長域)の範囲において0.5 nm 間隔で波長別の紫外域日射量を観測した.測器の設置場所は,第32 次隊の観測開始以来同 じ気象棟屋上である(図1①の位置).

5.4.2. 観測経過

2014 年 2 月 1 日に第 54 次隊からブリューワー分光光度計 MK III (168 号機) による観測 を引き継ぎ,第 55 次隊の観測を開始し,太陽直射光を遮る遮蔽装置を用い,波長別紫外域 日射量の散乱成分の試験観測を行った.

越冬中は長期にわたる測器障害はなく,おおむね順調に観測を行った.ブリザード等の強 風時には測器保護のために,測器の屋内退避,または受光部への保護具取り付けなどの対策

を行い,観測を中断した.測器の光学系全体の波長感度を監視するための外部標準ランプ点 検は,10日に1回程度の間隔で行った.

5.4.3. 観測結果

波長 5 nm ごとに積算した波長別紫外域日射量の日積算値とオゾン全量を図 14 に示す.各

(WHO, 2002).

波長帯ともに日積算値は、日最大太陽高度角と相関した季節変動をする中で、オゾン全量と 逆相関した日々変動をしている。長波長側の観測値はオゾン全量の影響が比較的小さく、年 間最大値は日最大太陽高度角が大きく日照時間が長い夏至(2014年は12月22日)頃に出 現する。一方で短波長側の観測値は、太陽高度角や日照時間よりもオゾン全量の影響を受け やすいため、年最大値は、日最大太陽高度角が比較的大きくかつオゾン全量が少ない頃に出 現する。2014年における日積算値の年間最大値は、短波長側(290 nm から 295 nm、295 nm から 300 nm、300 nm から 305 nm 及び 305 nm から 310 nm)は11月9日、長波長側(310 nm から 315 nm、315 nm から 320 nm 及び 320 nm から 325 nm)は12月9日に観測した。

紫外線が人体に及ぼす影響の度合いを示すために、紫外線の強さを指標化したものとして、 UV インデックスがある(WHO 環境省, 2002, 2008).昭和基地における 2014 年 1 月から 2015 年 1 月の日最大 UV インデックスの年変化を図 15 に示す.UV インデックスは人体へ の影響が大きい短波長側に重みをかけた上で波長積分し算出するため、波長別紫外域日射量 の短波長側の観測値と同様の変化傾向を示す.2014 年における UV インデックスの年最大 値は、11 月 9 日の 9.6 であった.

5.5. 大気混濁度観測

5.5.1. 観測方法と測器

太陽追尾装置に搭載したサンフォトメーター(Precision Filter Radiometer(PMOD/WRC, 2007),以下「PFR」),及び下向き日射放射観測の直達日射計の観測値を用いて大気混濁度 観測を実施した.観測場所は気象棟前室屋上及びその北側に棟続きで隣接する観測デッキ上 である(図1①の位置). PFR は、オゾン全量観測時刻付近で太陽面に雲がない時に波長別 (368,412,500,862 nm の4 波長)の直達光強度を測定することにより,波長別のエーロ ゾルの光学的厚さ(Aerosol Optical Depth,以下「AOD」)を求めることができる.また、4 波長(368–862 nm)の AOD からは、オングストロームの波長指数 Ångstrom *a*(以下「*a*」), 及び混濁係数 Ångstrom *β*(以下「*β*」)が求められる. AOD 算出に用いるレーリー散乱式 中の定数については、気象庁の大気混濁度観測と基準を合わせるため、第 40 次隊から第 54 次隊までと同様に 0.00864 を用いた(東島ほか、2003). 直達日射計ではオゾン全量観測時 刻付近で太陽面に雲が無い時を選び、ホイスナー・デュボアの混濁係数を求めた.

5.5.2. 観測経過

2014年2月1日に第54次隊から観測を引き継ぎ、第55次隊のデータ収録を開始した.

5月1日以降,約-20℃を下回る時には第54次隊と同様に副器である PFR(N53号機) の受光窓内部に着霜が見られたが,観測に支障がない箇所であったため正機(N59号機)と の並行観測を継続した.これ以外に大きな障害はなく,おおむね順調に観測が行われた. 5.5.3. 観測結果

PFR による 4 波長の各 AOD 及び a, βの年変化を図 16 に示す. 2014 年は, a が 1 月か ら 4 月にかけて減少し, 8 月から 12 月にかけて増加する傾向であった. a の値は粒径分布 の変化を意味する.地上観測(長田ほか, 2010)や係留気球観測(Hara *et al*, 2011)におい ても同様の季節変化をしている.この季節変化は、冬から春は荒天による海塩粒子発生の影 響が強く(海塩粒子が卓越),春から夏には硫酸粒子が卓越する(Hara *et al*, 2013)ことと 対応する.

直達日射計による直達日射量から求めたホイスナー・デュボアの混濁係数の年変化を図 17に示す.ホイスナー・デュボアの混濁係数は、大気中の水蒸気の影響を受ける波長を含 むため、夏から秋にかけて小さくなり、春から夏にかけて次第に大きくなる傾向がある. 2014年も平年と同様の季節変化であった.

- ローム指数及びオングストローム混濁係数の年変化(2014年1 月~2015年1月).
- Fig. 16. Annual variations of aerosol optical depth for each wavelength, Angstrom exponent and Angstrom turbidity coefficient at Syowa Station (Jan.2014–Jan.2015).

図 17 昭和基地におけるホイステー・テュホアの混濁係数の年変化 (2014年1月~2015年1月).

Fig. 17. Annual variations of Feussner-Dubois' turbidity coefficient at Syowa Station (Jan.2014–Jan.2015).

6. 天気解析

気象庁数値予報格子点資料に基づく各種天気図及び予想図,各国数値予報センター等で公 表している各種天気図及び予想図,気象衛星による雲画像の資料のほか,毎日の地上気象観 測,高層気象観測,気象ロボット観測から得られたデータ等を利用して,高低気圧や前線の 移動などの天気解析を行った.天気解析の結果は,昭和基地における屋外作業や隊の野外オ ペレーション等を支援するため気象情報として提供した.

6.1. 解析に用いた資料

(1) 気象庁数値予報格子点資料に基づく各種天気図及び予想図

第54次隊に引き続き,気象庁全球予報モデル格子点資料(00 UTC,12 UTC 初期値)か ら作成した各種天気図及び予想図を気象庁スーパーコンピューターシステムより取得し,解 析に用いた.

山本浩嗣ほか

(2) 各国数値予報センター等作成の天気図及び予想図, 衛星画像

インターネットにて各国数値予報センター等が公開する解析値及び予報値を利用した.ま

た,各種衛星画像の取得を行い天気解析の参考とした.

(主な参照先)

- ① AMPS (Antarctic Mesoscale Prediction System)
- 2 AMRC (Antarctic Meteorological Research Center)
- ③オーストラリア気象局作成インド洋地上天気図
- ④オーストラリア気象局作成南半球 500 hPa 解析図
- ⑤南アフリカ気象局作成地上天気図
- ⑥ウィスコンシン大学コンポジット衛星画像
- (3) 極軌道衛星雲画像等

米国海洋大気庁(NOAA)が運用する衛星の受画装置により,独自に受信した赤外や可視 などの衛星画像と,多目的アンテナ部門が昭和基地イントラネット上に掲載していた NOAA 衛星の赤外及び可視画像を天気解析に用いた.

6.2. 解析結果の提供とその利用

解析結果は、昭和基地屋外作業、野外オペレーション、航空機オペレーション時などに気 象情報として提供したほか、ブリザードによる外出注意令、禁止令の発令、解除の参考情報 として提供した.また、毎日の隊のミーティング時に翌々日までの気象情報を発表するとと もに、昭和基地イントラネット上で地上気象観測実況値などと併せて提供した.

昭和基地周辺の活動以外にも,第55次夏隊に対し,マラジョージナヤ基地周辺の気象情報を提供(2014年2月14日から2月16日)した.また,しらせの行動支援のため気象庁数値予報資料及び気象情報を提供した(2014年2月1日から2月13日,2014年12月17日から2015年1月31日).

7. その他の観測

7.1. 気象ロボット観測

7.1.1. 観測方法と測器

昭和基地周辺の気象状況を把握することにより,観測隊の野外活動などの支援を目的とし て,第54次隊でロボット気象計をS17航空機拠点小屋屋上(南緯69度01分45秒,東経 40度05分30秒,標高約600m)に設置し,2014年2月1日に正式運用を開始した. 観測 結果は,大陸方面への野外オペレーションへの支援情報や昭和基地周辺の気象予想の資料と して利用したほか,航空機オペレーションの気象実況値として提供した.気象ロボット観測 地点と昭和基地の位置図を図18に示す.

218

観測項目は、気圧、気温、湿度、風向・風速で、403.0 MHz 帯周波数の電波により、デー タを無線で昭和基地気象棟へ送信している。電源は、風力発電機によって充電されるサイク ロン電池 12 個を使用している。ロボット気象計の、信号変換部、蓄電池、送受信装置が収 められているそれぞれの箱にはヒーター機能があり、低温による機器の動作不良を防止して いる。風力発電機による充電量に対し、ヒーターによる電力の消費が激しい場合は、データ の送受信が1日1回に変更され、更に電力の消費が激しいと、送受信が停止される場合があ る。使用測器を表 14 に示す。

7.1.2. 観測経過

第 54 次隊で不具合が生じた湿度計は,2014 年 5 月 21 日に交換し復旧した.2014 年 2 月 1 日から 5 月 21 日までの湿度データを欠測とした.2015 年 1 月 17 日に湿度計に障害が発生 し,1 月 31 日までの湿度データを欠測とした.そのほかの観測についてはおおむね順調であっ た.

7.1.3. 観測結果

S17 ロボット気象計による地上気象旬別経過図を昭和基地のデータと合わせて図 19 に, 風向の出現頻度を表した風配図を図 20 にそれぞれ示す.図 19 を見ると,両地点の標高が異 なるため,S17 の気圧,気温は昭和基地より低く,風速は大きいが,どの要素も昭和基地と 同じ変化傾向がみられる.一方,図 20 を見ると,昭和基地の卓越風向がおおむね北東から 東北東であるのに対し,S17 では東北東から東になっている.これは大陸斜面上に位置する S17 では,昭和基地よりもカタバ風の影響が大きいためと考えられる.

表 14 S17 における気象ロボット観測使用測器等一覧表 (2014 年 2 月~2015 年 1 月). Table 14. Observation elements, observation frequency, accuracy, and instruments at S17 (Feb.2014– Jan.2015).

観測項目	観測時刻	観測精度	使用測器・型式
気圧	毎正分	±0.60 hPa	電気式気圧計(CVS-PTB-210)
気温	毎正分	±(0.15+0.002 t) ※tは温度の絶対値℃	電気式温度計(C-HPT)
湿度	毎正分	\pm 1% (0–90%) \pm 1. 7% (90–100%)	電気式湿度計(CVS-HMP-155D)
風向	毎正分	±3°以下	周 車 刑 周 向 周 演 計 (CVC-5106-M-UD)
風速	毎正分	± 0.3 m/s	風車空風间風速計(C16-5106-M-HD)

図 19 S17 観測点及び昭和基地における地上気象旬別経過図(2014年2 月~2015年1月).

Fig. 19. Time series of 10-day mean surface meteorological data at S17 and Syowa Station (Feb.2014–Jan.2015).

- 図 20 S17 観測点及び昭和基地における風配図 (2014 年 2 月~2015 年 1 月). 実線: S17 破線:昭和基地.
- Fig. 20. The wind rose at S17 and Syowa Station (Feb.2014–Jan.2015). The solid line is for S17, and the dashed line is for Syowa Station.

7.2. 内陸旅行中の気象観測

第55次隊では、2014年10月3日から13日までの11日間,第56次隊内陸旅行用燃料の 輸送,新規導入車両(PB301及びEG110)の試験運転,及び気水圏部門,宙空圏部門が担当 するオペレーションの遂行を目的として,S122への旅行を行った.気象部門はこの旅行に 参加し,旅行中に気象観測を行った.

図 21 に, S16 からみずほ基地までのルートと S122 との位置関係を示す. S16 から S122 は S ルート及び H ルートを使用した (S ルートの図は省略).

7.2.1. 観測方法と測器

雲(雲量・雲形・向き・高さ),現在天気,大気現象及び視程は目視により観測し,気温,気圧及び風速は Nielsen-Kellerman 社製の携帯気象計 Kestrel 4500 を用いて観測した.風向は ハンドベアリングコンパスを用いて観測した.

7.2.2. 観測経過

内陸旅行では,目視観測を含む観測を,朝食時(07時頃)及び昭和基地との定時交信前(18時頃)(以下,時刻はすべてLT(協定世界時+3時間))の1日2回を目安としてキャンプ地にて行った.観測時刻は旅行隊の移動や作業のために多少のずれがあった.観測は雪上車の影響を受けないように車両の風上側で行った.

7.2.3. 観測結果

図 22,表15に観測結果を示す. 観測記録期間は2014年10月3日19:30から10月13日6:20 である.

旅行中, 天気は薄曇りや晴れでおおむね経過し, ブリザードのような野外行動に支障が出るような気象状況にはならなかった.旅行中の最低気温は-43.0℃(10月9日06:10, S122),最大風速は9.1 m/s(10月11日07:40, H132)であった.

7.3. 気象庁本庁へのデータ伝送

世界の気象機関への観測結果の通報は,第45次隊から常時接続となったインテルサット 衛星回線を利用して観測データを一旦日本国内に送信し,日本国内から世界の気象機関へ通 報する方法により行った.なお,インテルサット衛星回線の障害やメンテナンスなどにより 送信ができない場合には,昭和基地から気象庁予報部情報通信課システム運用室(東京都清 瀬市)へインマルサット回線を利用した電話 FAX により通報文を送信し,代行発信を依頼 した.

図 21 S16から S122 及びみずほ基地への経路(国立極地研究所提供図 を改変).

Fig. 21. Traverse route from S16 to S122 and Mizuho Station.

224

表 15 旅行中の気象観測データ(2014 年 10 月 3 日~13 日).	ace meteorological observation data round trips from S16 to S122 (Oct.3-13, 2014).
表	Surface
	Table 15.

		2Sc,3Ac,9Ci	0+Sc,4Ac,10-Ci	0+Sc,1Ac,10-Ci	10-Sc,XAc	8Sc,3Ac,XCi	0+Sc,3Ac,10As	0+Sc,2Ac,4Ci,10Cs	0+Sc,1Ac,3Ci,10Cs	0+Sc,2Ac,10-Ci	0+Sc,0+Ac,10-Ci	0+Sc,0+Ac,10-Ci	0+Sc	0+Sc,2Ci	0+Sc	0+Sc,0+Ac,3Ci	0+Sc,0+Ac,0+Ci	0+Sc,0+Ci	0+Sc,0+Ac,10-Ci	1Sc,0+Ac	3Ci,9Cs	10Sc
~	曺堇	6	10-	10-	10-	10-	10	10	10	10-	10-	10-	+0	2	1	3	1	1	10-	1	6	10
	視程 [km]	30	30	30	L	20	30	30	25	30	30	30	25	4	30	30	30	5	30	30	30	30
	風速 [m/s]	5.3	6.9	5.4	8.4	5.6	7.4	6.4	5.9	6.2	2.9	3.6	7.5	4.6	3.5	4.6	3.5	9.1	3.3	4.1	5.3	6.8
~ ×	風向	Е	Е	Е	Е	Е	Е	NE	NE	NE	NE	NE	NE	NE	Е	Е	Е	Е	Е	Е	Е	ш
	天気	薄曇り	伯蓍菓	は曇軻	何蓍	何蓍	ら蓍	ゆ蓍菓	は曇軻	は曇剤	は曇軻	は曇軻	快晴	晴れ	快晴	晴れ	快晴	快晴	ゆ蓍菓	快晴	伯蓍菓	ん薹
þ	気温 [°C]	-25.2	-23.6	-27.4	-22.7	-29.7	-34.0	-31.9	-35.4	-35.9	-33.0	-37.1	-43.0	-35.3	-38.0	-40.0	-33.0	-35.7	-28.3	-30.7	-22.5	-17.8
	気圧 [hPa]	916.7	913.2	846.0	840.3	807.7	808.0	778.3	776.8	746.7	747.0	747.2	749.3	749.7	772.8	776.3	809.9	808.0	848.8	849.4	907.3	899.3
,	地点	S16	S16	H35	H35	H132	H132	H224	H224	S122	S122	S122	S122	S122	H248	H248	H132	H132	6H	6H	S16	S16
	時刻	19:30	8:00	18:00	8:00	19:00	7:30	18:00	7:30	18:30	13:00	17:30	6:10	13:00	18:50	8:00	18:30	7:40	18:40	6:20	18:00	6:20
	Ш	10月3日		1074D	10 8 6		1080		10870		10 11 0	Подог		10月9日		108100		10 11 1		10 8 1 2 0		10月13日

謝 辞

第55次隊の気象定常観測を遂行するにあたり,観測上の技術的援助及び助言をいただい た第55次隊の宮岡宏観測隊長,牛尾収輝越冬隊長ほか第55次観測隊員の皆様,国立極地研 究所及び気象庁南極観測事務室,高層気象台ほか気象庁の関係官に感謝します.また,第 55次隊行動において,観測物資の輸送をはじめ,多大なる支援をいただいた「しらせ」乗 組員の方々にも厚く御礼申し上げます.

この報告をまとめるにあたり,気象庁の田中恵信南極観測事務室長,荻原裕之前南極観測 事務室長,森陽樹南極観測事務室員,馬場祐介前南極観測事務室員,第53次・第54次隊気 象部門の方々,第61次隊気象部門の高見英治氏にご助言をいただきました.御礼申し上げ ます.

文 献

- 安達正樹・斉藤信也・石丸和樹・大森英裕・三浦恒人 (2020): 第54次日本南極地域観測隊気象部門報告 2013. 南極資料, 64, 38-86, doi: 10.15094/00015900.
- 青木周司 (1997):昭和基地および「しらせ」船上における地上オゾン濃度の連続観測. 南極資料, 41, 231-247. doi: 10.15094/00008972.
- 江崎雄治・平沢尚彦・林 政彦・山内 恭 (2013): 1997 年春季に南極昭和基地において発現した地上 オゾン消失現象. 天気, 60, 91-96.
- 東島圭志郎・佐藤 健・安ヶ平一也・村方栄真・河原恭一 (2003):第40次南極地域観測隊気象部門報告 1999. 南極資料,47,171-271, doi:10.15094/00009263.
- 伊藤真人(2005):広帯域(全天型)紫外域日射計の NIST ランプ検定による測器感度変化と問題点.高 層気象台彙報,65,45-52.
- 伊藤真人・宮川幸治(2001):二重分光光度計ブリューワー MK III による紫外域日射観測. 高層気象台 彙報, 61, 5-28.
- K. Hara, K. Osada, C. Nishita-Hara, and T. Yamanouchi. (2011): Seasonal variations and vertical features of aerosol particles in the Antarctic troposphere. Atmos. Chem. Phys., 11, 5471–5484, doi: 10.5194/acp-11-5471-2011.
- K. Hara, K. Osada, and T. Yamanouchi. (2013): Tethered balloon-borne aerosol measurements: seasonal and vertical variations of aerosol constituents over Syowa Station, Antarctica. Atmos. Chem. Phys., 13, 9119– 9139, doi: 10.5194/acp-13-9119-2013.
- 気象庁(1989): 南極気象観測三十年史. 東京, 164-164.
- 気象庁(1990):国際気象通報式(第8版).東京,447p.
- 気象庁 (1991):オゾン観測指針 オゾン全量・反転観測編.東京, 91p.
- 気象庁(1993):紫外域日射観測指針. 東京, 83p.
- 気象庁 (1997): 国際気象通報式·別冊. 東京, 666p.
- 気象庁 (2002): 地上気象観測指針. 東京, 176p.
- 気象庁(2004):高層気象観測指針.東京,248p.
- 気象庁(2005):気象観測統計指針.東京, 158p.
- 気象庁(2010):オゾンゾンデ観測指針[ECC 型編].東京,46p.
- 気象庁 (2015): オゾン層・紫外線の年のまとめ (2014). 東京, 5-5.
- 間宮嘉久・居島 修・石井憲介・大河原 望・辰己 弘 (2012):新しい日射放射観測の開始について. 測候時報, 79, 15-37.
- 宮川幸治(2007):ドブソンオゾン分光光度計の自動化ウインドウズシステムの高度化―コンパクト PCI 制御方式への移行―.高層気象台彙報, 67, 85–98.
- 宮川幸治・上野圭介(2008):天頂雲検出器の反転観測への導入.高層気象台彙報,68,51-58.
- Miyagawa, K., T. Sasaki, H. Nakane, I. Petropavlovskikh and R. D. Evans (2009): Reevaluation of long-term Umkehr data and ozone profiles at Japanese stations. J. Geophys. Res., 114, D7, doi: 10.1029/2008JD010658.

- 長田和雄・林政彦・原 圭一郎・矢吹正教・和田 誠・塩原匡貴・山内 恭・藤田耕史 (2010):昭和 基地における大気中粗大粒子濃度の季節変化. 南極資料, 54, 特集号, 487-497. doi: 10.15094/00009570
- 中野辰美・岩野園城 (2008): エアバッグ方式流量計を用いたオゾンゾンデ用ポンプ効率測定装置の開発. 高層気象台彙報, 68, 43-50.
- Petropavlovskikh, I., P. K. Bhartia, and J. DeLuisi (2005): New Umkehr ozone profile retrieval algorithm optimized for climatological studies. Geophys. Res. Lett., **32**, L16808, doi: 10.1029/2005GL023323.

PMOD/WRC (2007) : Precision Filter Radiometer Documentation. PMOD/WRC, 43p.

- 佐々木 利・松元 誠・田中悦子・塩水流洋樹・高見英治 (2015):第51次日本南極地域観測隊気象部 門報告 2010. 南極資料, **59**, 179-228, doi: 10.15094/00010900.
- 柴田誠司・伊藤真人・能登美之・上野丈夫・岡本利次(2000):全天型紫外域日射計の感度変化と測定 精度,高層気象台彙報,60,17-24.
- WHO (2002): GLOBAL SOLAR UV INDEX A Practical Guide- . Geneva, 28p.
- Yamada, K., N. Hirasawa (2018): Analysis of a Record-Breaking Strong Wind Event at Syowa Station in January 2015. J. Geophys. Res., Atmosphere, JGRD55093, doi: 10.1029/2018JD028877