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Spectral Observation Theory and Beam Debroadening
Algorithm for Atmospheric Radar

Koji Nishimura™, Masashi Kohma, Kaoru Sato, and Toru Sato

Abstract—1In order to measure the variance of wind velocity,
which is contributed from turbulence, via radar observations, it is
necessary to remove the unwanted contribution from strong hor-
izontal velocity components through the finite beamwidth of the
radar. This effect is referred to as beam broadening. Although the
amount of beam broadening has thus far been calculated based
on the approximating assumption that the pattern of the beam
is rotationally symmetric and has very low sidelobes, we need to
take a more theoretical approach to radar—one that does not
have a simple beam pattern like the Antarctic Program of the
Antarctic Syowa Station (PANSY) radar (69S, 39E). In this arti-
cle, we clarify the theoretical relationship in a very simple form
between the turbulence spectrum, which is directly associated
with the variance of turbulence, two-way beam patterns, and
the observed spectrum, using autocorrelation functions (ACFs).
The theory is thoroughly universal and applicable to any type of
atmospheric radar, such that we can quantitatively analyze radar
observation systems. Furthermore, we propose a ‘“debroadening”
algorithm based directly on this theory and from calculations of
the general maximum likelihood (ML). We performed numerical
simulations that validate our theory and the algorithm.

Index Terms— Atmospheric radar, mesosphere-stratosphere-
troposphere (MST) radar, beam broadening, debroadening,
turbulence.

I. INTRODUCTION

EASURING the variance of the velocity of the

atmosphere o, which is proportionally linked to the

energy dissipation rate, is a common role given to mesosphere-
stratosphere—troposphere (MST) radar. However, the spectral

width ¢, which is observable directly with radar, contains

not only the contribution from turbulence itself (o2, but also
some measurement biases due to the vertical variation of the

velocity (62.,,), the temporal variation of the velocity (a2,.),

and projection components of the mean wind velocity to the

off-center sensitivity of the radar beam (o2,,,,) [1]. Here, 63,
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Ofme> and oy, are commonly referred to as shear, time, and

beam broadening, respectively. Therefore, in a symbolic sense,
the observed spectral width o, is expressed as

2 _ 2 2 2 2
Oobs = Oturb + Obeam + O'shear + Olime + error. (1)

These unwanted components often become much larger than
ol itself, and as such cannot be ignored.

Among these components, o3, and o3, are induced by
the variance of wind velocity in height and time, respectively.
Typically, these components are estimated by tracing the
variation of the mean Doppler shift (spectral mean) along
height and time, respectively, and then removed.

The remaining broadening component, o2, is caused by
the finite radar beamwidth, typically up to a few degrees. This
results in variability of the projection angle to the mean wind
velocity vector, giving different Doppler shifts with respect to
the mean wind velocity from one part to another in the beam.
With respect to this effect, a series of comprehensive studies
has been conducted by Hocking [2]-[4]. They assumed that the
radar beam is rotationally symmetric and that the beam pattern
(e.g., the polar gain diagram) is characterized simply by the
beamwidth 6y.,, with no sidelobes. Recently, the impact of
neglecting the sidelobes in estimating the strength of the tur-
bulence is evaluated by Sommer and Chau [5]. They concluded
therein that even the standard sidelobe level (~—18 dB) for
circular aperture should be taken into account for evaluating
turbulence.

Via considerations on the simplified radar beam model,
it has been a common understanding that the beam broadening
should be expressed as a convolution of “beam broadening”
spectrum the width of which is proportional to the mean back-
ground wind velocity and the “true” turbulent spectrum in the
frequency domain. Accordingly, it has also been known that
this can be expressed more simply in the “correlation domain”
as a multiplication of the two autocorrelation functions corre-
sponding to the “beam broadening” and “true” spectra [6]—[9].

Following these studies, VanZandt et al. [10] proposed a
variational technique to estimate o7, by taking advantage
of two different beam widths. However, this technique is
also based on the assumption that the main beam is almost
rotationally symmetric and well defined by its width, and that
the sidelobes are negligible.

Although most of the existing MST and wind profiler
radars have a uniform antenna array with approximately cir-
cular or rectangular arrangements, those with a distributed
and asymmetric array complicate the evaluation of the
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turbulence spectrum. The Program of the Antarctic Syowa
Station (PANSY) MST/IS Radar (69.0°S, 39.6°E) is one such
example. PANSY radar is the first MST/IS radar installed
in the Antarctic. It has a large phased array consisting
of 1045 antennas [11]. This radar has a distributed and asym-
metric antenna arrangement, and consequently a complicated
beam pattern.

This is because we needed to rearrange and spread the
arrangement to avoid heavy snow accumulation due to its
density, after the one we experienced in 2012. The resulting
antenna arrangement and its beam patterns are shown later. For
this reason, we cannot apply simplifications as in the earlier
studies. Alternatively, a versatile and thorough mathematical
approach is needed so as not to exclude any radar design.

In what follows, we develop a mathematical theory that
describes how the power spectrum of the radar echoes is
formed with respect to the two-way complex-valued beam pat-
tern and the velocity spectrum of the atmospheric turbulence.
We further propose a debroadening algorithm that is formed
simply using this relationship, namely an inverse calculation
that obtains the true turbulence spectrum given the series of
radar echoes or a power spectrum.

This article is organized as follows. In Section II,
we develop the mathematical formulation of the radar obser-
vation to derive an expression of the observation function, or,
in other words, the two-way beam pattern. Section III is the
core part of this article in which we develop the mathematical
theory of the radar echo, the turbulence spectrum, and the
observation function (beam pattern). In this section, it is
proven that the autocorrelation of the received echo is merely
a multiplication of the autocorrelations of the turbulence
and the observation function. In Section IV, we propose
a numerical debroadening algorithm that estimates the true
turbulence spectrum by removing the effect of the beam
pattern. In Section V, we describe numerical simulations that
demonstrate that our theory and algorithm works as we expect.
In Section VI, we place some discussion about the impact
on scientific analyses, and also technical implementations.
In Section VII, we state some concluding remarks. Note that
we separate some mathematical descriptions in Appendixes A
and B in order to keep the structure of this article as simple
as possible.

In the following discussion, the words “power spectrum”
and “autocorrelation” often appear. As is well known, the two
of them are the Fourier transform to each other and have very
similar information. Although we choose a word of the two
that fits more in the context, one would want to replace it by
the other when it is confusing.

II. RADAR OBSERVATION FUNCTION

We first formulate the radar observation system as a func-
tion of space. A basic formulation is detailed, for example,
in Hocking et al. [12]. We consider that the target atmosphere
is three-dimensionally gridded in cubic cells as schematically
depicted in Fig. 1, with dimensions L; x L, x L3, where L,
can be L > /2 to reduce the computational cost. In order to
avoid complexities in description, we use the single dimension
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Fig. 1. Grid configuration: the cells are arranged such that the first axis
matches the direction of the wind vector.

factor L that is L} = L, = L3 = L throughout this article.
This is not an essential restriction in the following theory.
The arrangement of the grid is as follows. We set the first
axis of the grid parallel to the mean wind vector u. We do
not consider the case in which u is completely vertical or 0.
The second axis is set horizontally and perpendicular to u.
Finally, the third axis is set perpendicular to the first two axes.
Let k, I, and m be integer indices of the position of
cells along the first, second, and third axes, respectively. The
positions of cells X, X (k+1)im » X (k+2)im » - - . are consequently
aligned along the mean wind direction. In order to avoid
the complexity of subscripts, when exact 3-D positions are
unnecessary, we use an alternative serial index & like xj
instead of k, [, and m. Thus, the following operators are

equivalent:
2.=2.2.2.=> @
h k ! m klm

Let x; and x; denote the positions of the ith and
jth antennas, respectively, and let x,(z) be the position of
the hth target cell at time ¢. Time ¢ is divided into two parts:
t = t, + T, where slow time #, = nt, is the time point
of the nth pulse transmission where f, is the interval; and
fast time 7; 0 < T < t, the lapse time after the pulse
transmission at t,,.

We first consider a path of the signal transmitted from
antenna i, scattered by target cell 4, and then received by
antenna j. Let p;(r) be the transmitted signal, f,(r) the
scattering coefficient at cell / as a function of time, and ¢;(¢)
the receiver filter. Standardly, ¢;(¢) contains a matched filter
and a frequency conversion, and then the signal is sampled
at the fast time 7 in accordance with the nominal range
R = ¢T /2, where c is the speed of light. The sampled signal
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corresponding to a nominal range R thus becomes

e ey — x|
rhij(tn) = / fh (tn +T — 7)
0 C

. (T ) = xil e - xj|)

c

2R
X qj; (T — —) drT. 3)

c

The scattering coefficient function f},(¢) varies in time depend-
ing on the state of the atmosphere, and it can be treated
as constant during one pulse repetition interval 7, ; therefore,

foltn +T) = fir(ty), T < ta.
Then

Tij(tn) = fu(tn) /0 i pi(T = Thij(ta)) q;(T — Tr)dT  (4)

where Tj;;(t,) denotes the time of flight between antennas i
and j via target cell & as a function of slow time #,. That is

|xh(tn) - xi| + |xh(tn) B xj|
C

Thij(t,) = (5)

and

2R
T = — (6)
¢

is the sampling time corresponding to the nominal range.

The integration in (4), a cross correlation of p;(¢) and ¢;(t),
consists only of known functions and can be calculated apart
from the received signal. When we define

N
€0 = [ P ayr = Te+ 0T )
0
we can rewrite (4) as

s (1) = fi(tn) & (T (@) ®

For simplicity, we define g;;(t,)
becomes

= g;j(Thij(t2)), and (8)

rij(tn) = fr(tn) &nij(t). 9

In the case of monostatic radar with antennas indexed with
1,2,..., Nant, @ combined receiver signal in terms of
target cell & is

1 =

Nant Nant

() = filtn) Y > &nij(ta)
i

= fh (tn) 8h (tn) (10)
where g;(t,) is the sum of g;;(t,) through i and j. Again,
in (10), f5,(t,) is the scattering coefficient (usually real-valued)
of target cell h, and g,(¢,) is the complex beam pattern
(i.e., the receiver filter form considered) with respect to the
target cell’s position xy,(z,).

III. DERIVATION OF AUTOCORRELATION FUNCTION
(ACF) AND POWER SPECTRUM

In the previous section, we derived a form of the received
signal as a function of the scattering coefficient at gridded
cells of the target atmosphere. We now turn to the derivation
of a form of the power spectrum of the echo from the received
signal. Unlike most radar systems, we exploit the ACF with
which the final result is given in a simpler form than the one
with the power spectrum. Furthermore, in this section, we treat
slow time £, as continuous ¢ for the sake of simplicity, insofar
as doing so does not significantly alter our conclusions.

Signals received at the antennas are added to a single series
of signal r(¢). That is

r@) =Y fult) gn(t). (11)
h

In order to derive the autocorrelation of the signal, we place
two assumptions or approximations of the scattering coeffi-
cient functions of the gridded atmosphere cells.

1) Independence: f,(t) 1L fi (¢) for h # h'.
2) Spectral equality: B|.Z;[ fi()]11* = EL.Z[ fi (]I,

where the operators L, E, and .%#, denote independence,
the ensemble expectation, and the Fourier transform with
respect to time 7, respectively. Assumptions 1 and 2 mean
that the scattering coefficient functions are independent at one
cell to another as a time series with the same power spectrum.
As a corollary of Assumption 2, with respect to the ACFs,
the equality Fj(r) = Fp(r) = F(r) is also true for any
h and h’, where Fj, () is the ACF of f}, (7). The unsubscripted
F(7) is the common expression for all cells.

The ACF of the received signal r(f) is mathematically
defined by an integration of a signal of infinite time

Roo(7) = /r*(t)r(t + 7)dr (12)

where * operator denotes complex conjugation. Obviously,
we need to consider finite time observations in practice. From
the mathematical point of view, however, an autocorrelation
with a finite time integration is subject to statistical fluctua-
tions. To bridge the gap between the theoretical autocorrelation
and the practical observations, we first consider an ensemble
of an infinite number of segmented time observations in order
to obtain a mathematical expression of autocorrelation that
statistically converges.

Let r.(¢) be the observed signal with respect to the integer
index of the ensemble experiment (. Then, an ensemble
averaged ACF is

R(7) = E/{réw(t) w(r) }*{rg(t + ) w(t + r)} dr (13)

where w(r) is a rectangular window function for taking into
account the time duration D. That is, as also shown in Fig. 2

—D/2 <t <DJ2

1
w(r) =4’ 14
® {0, otherwise. 14
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Fig. 2. Rectangular window function w(¢) and its ACF W(r) are plotted.

Substituting (11) in (13), we obtain

R(r) = E/{Z T () g5 (1) w*(t)}
h

X {thf(t—l-r)ghr(t—i—r)w(t—i—r)}dt (15)

h

—E [ 2 Y 0 fcte+ o)
h W

X gy(®) gt + 1) w ) wt+17)de (16)
= [ XX B0 ficte + 0]
h h
X gr(®) gw(t+ 1) w @) w(+r1)dr. 17)

In (17), the expectation operator is applied only to the
bracket that contains f}".(¢) fi- (¢ + ) because this part is the
only stochastic signal, whereas the other parts are determinis-
tic. When i # ', E[f;5-(t) fir-(t +17)] = 0 because f-(¢) L.
Sfwe(t + 1) for any h # h' according to Assumption 1. Then,
E[ fi-(t) foc (t + 7)1 (., the case of h = h’) should be
independent of 7, because of stationarity, and from /, because
of Assumption 2. Accepting the ergodic hypothesis, we can
replace the expectation with a temporal integration: we thus
obtain

Ehzmﬁw+n}=/ﬁywma+nm (18)
— F(r) (19)

where F(7) is the unique ACF common to all the cell indices
h and experiment indices (. Thus

i F(t), h="W
EU@mﬁQ0+ﬂ]={QT . (20)
Substituting (20) in (17), we obtain
R(r) = /Z F(r) g (t) gn(t+7) w* () w(t+7) dt  (21)
h
(22)

= F(r)/Z[g;,“(t) g;,(t—i—r)} w* () w(t+7) dr.
h
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Fig. 3. Schematic illustration of the cells. In order to derive the function
F(7), every string of cells along Axis 1 is regarded as a discrete time series
with increments at every L/|ul.

In (22), the summation operator is applied only to
85 (t) gn(t + t) because this is the only term dependent on
h that remains in the integrand. We now expand the serial
index & to a set of 3-D indices k, [, and m, as explained in
Section II. Then, the summation becomes

> g et +1)

h
= ZZZ g;:lm(t) gklm(t + T)
m 1 k
)Y 3R (B PR T I
m 1 k

where g;, (t +ktp) is a 1-D section of the complex beam func-
tion along the mean wind direction # shown in Fig. 3, sampled
at time interval kL /|u| corresponding to grid interval L.

When we look at the summation in terms of k in (25),
> &t +kL/ul) gum(t +kL/|u| + 7), it takes the form of
an ACF having a summation with respect to k instead of in
integration by ¢. Assuming g;', (¢) are smooth functions and the
sampling interval kL /|u| corresponding to the spatial interval
L is sufficiently dense, we define

kL kL
Glm(T) = Z g[*m (t + m) 8lm (f + m + T) (26)
k

where G, (7) is the ACF of g, ().
We now define G(r) as the sum of all ACFs Gy, (7) of the
complex beam functions g, (¢) indexed with [ and m, which is

G =) > Gum)=> gi®alt+1). @7
m 1 h

(23)

(24)

In function G(7), time lag 7 has a relationship to the spatial
distance along the x-axis via the velocity of the wind u.
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Specifically, 7 = {/|u| where ¢ is the spatial lag along the
x-axis, and thus

G(r) = G(¢/ul). (28)

Substituting (27) into (22), we obtain
R@) = F(©) [ Gy @l + 1) d (29)
= F(7) G(r)/w*(t) w(t + ) dr. (30)

The remaining integration is simply the ACF of the window
function. Therefore, (30) can be rewritten as

R(r) = F(r) G(t) W(7). 3D

The final form of R(z) in (31) states a remarkable relationship
between the four ACFs. Note that the result is not trivial,
because, in general, R;y(t) = Ruq(t)Rpp(t)Rec(7) does not
hold where R,,(7) is the ACF of d(t) = a(t) b(t) c¢(¢), and
the other R.(r) are similarly defined, given that a(t), b(z),
and c(t) are arbitrary functions.

IV. ALGORITHM TO ESTIMATE F(7)

In this section, we derive a practical algorithm to estimate
the spectrum of f(¢) from the observed spectrum of r(r),
based on the relationship described in (31). In order to develop
the numerical algorithms, we employ the following discrete
expressions:

rln] = fuln] galn] (32)
h
and
R[v] = F[v] G[v] W[v] (33)
instead of
r6) =" fult) gn(t) (34)
h
and
R(r) = F(z) G(z) W(z) (35)

where n denotes the integer index of slow time ¢, = nt,, and
v denotes the integer index of the time lags .

In addition, we assume that the observed spectrum is given
in the form of an averaged periodogram (also known as the
Bartlett method) that is defined by the sum of the absolute
square of the discrete Fourier transform (DFT) of the received
signals. That is

Nens—1| Nag—1 n 2
Rlk] = rins +n| ex ( '27[1(—) (36)
; nz:; [ne +n] expl j Nan

where « is the integer index for the discrete frequency, Ny is
the length of the signal segment for the DFT, and Ny is the
number of ensemble averaging, or incoherent averaging. The
offset index n, is selected such that the signal segments do not
overlap in different DFT segments with the Bartlett method.
That is

ng = 4 N . (37)

We now want to solve (33) with respect to F[v] given R[v],
G[v] and W[v]. One simple way to do so is to calculate
R[v]/(G[v]W[v]), but this solution is too sensitive to noise
contained in R[v] and does not usually provide a satisfactory
result. Instead, we apply a simple parametric inversion method.

The most widely accepted parametric spectrum model
for atmospheric echo is the four-parameter Gaussian model
(e.g., [13], see also Appendix B). Accepting a Gaussian
spectral model, we are able to apply a Gaussian temporal
autocorrelation model as well. The four-parameter Gaussian
autocorrelation model is defined as

2n%6%v?  2mvu

expl———7 +j N + P, dlv]

2ro
Flv]l=A

(38)

where A, o, u, and P, are the amplitude, spectral width,
spectral mean, and noise level, respectively. J[v] is the discrete
delta function, which is 6[0] = 1 and 6[v] =0V v # 0.

Once we obtain G[v], given a wind velocity vector u,
we can calculate a theoretical R[v] according to (33).
By applying the DFT to R[v] following (41) in Appendix A,
we obtain a theoretical spectrum curve R[x]. Let Rops[x] be
a spectrum calculated by (41) or (46) from observed data. By
comparing R[x] and Rops[x], we can evaluate how close the
theoretical spectrum is to the one observed. One of the most
popular ways of evaluating the goodness of fit of R[x] is the
least mean squared (LMS) method in which the squared sum
of the residue between the two is evaluated.

Another evaluation method is the maximum likelihood
(ML), which pursues the maximization of the likelihood as a
function R [« ] with respect to Rqps[#], considering every R[x]
at an integer x as a scalar random variable that follows a class
of gamma distribution, which a sum of squares of Gaussian
random variables obey (often mentioned as “y? distribution”
in a not so rigorous situation). The ML technique is detailed,
for example, by Rice [14]. In this article, we employ the ML
method to demonstrate our proposed technique.

An example of an algorithm that estimates the optimal
parameters A, 6y, [t, and ﬁ,l, and the corresponding spectrum
Rlx], given Rops[x], is summarized as follows.

Algorithm:

1) Initialize A, 0, u, and Py,;

2) Calculate the initial R[x];

3) Calculate the initial likelihood;

4) Modify A, o,, u, and P,;

5) Calculate R[x];

6) Calculate the likelihood;

7) Return to Step 4 unless the likelihood reaches the

maximum.

Since analytic expressions of the derivatives of the likeli-
hood are difficult to obtain, optimization methods that do not
require the gradient vector should be applied.

V. NUMERICAL SIMULATIONS
A. General Characteristics

In order to validate and evaluate the algorithm we derived
in the previous sections, we conducted simple numerical
simulations. Our simulation was based on the PANSY radar
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Fig. 4. Antenna array of PANSY radar, in January 2017. The small hexagons
filled in blue show the positions of the antennas, where the larger hexagons
circumscribing 19 of them each indicate independent subarrays.

hardware with an operational frequency fy = 47 MHz. The
antenna arrangement is shown in Fig. 4.

The forward calculation model of the simulations to obtain
Robslx] was based on the grid model shown in Fig. 1. Therein,

the grid size was set to L = 30 m. Mean wind velocity
was set to |u| = 46.0 ms~!, with six different azimuth
angles 0, 60, ..., and 300. The beam direction was set to the

zenith. The envelope of the transmitted pulse was shaped to
the Gaussian with the full-width at half-maximum (FWHM)
of 1us. Consequently, the range resolution was 150 m. The
nominal range (height) was R = 6000 m.

Fig. 5 shows 2-D (horizontal) and 1-D sections of complex
beam patterns in Rows (a) and (b), G(z) in Row (c), and its
Fourier transform in Row (d). Therein, Row (a) shows the
horizontal section of the complex beam pattern at a height
of 6000 m rotated by the angle designated to each column
such that the x-axis agrees with the direction of u. The pairs
of Columns 1 and 4, 2 and 5, and 3 and 6 have opposite
wind direction. The x-sections of the beam and their RMS
envelopes are exhibited in Row (b). These plots are clipped
within the range x € [—400,400] m for visual presentation;
the calculations were done at a wider range. Row (c) shows
the complex ACFs G’ (&) as a function of spatial lag ¢ instead
of G(z). They are related as G'(¢) = G(&/|ul) = G(z).
One notable characteristic the ACFs show is that echoes lose
their correlation when the target moves by ~200 m, regardless
of how the original beam pattern spreads in space. Another
characteristic is that the ACFs have some phase rotation even
when the wind is horizontal while the beam is vertical. This
is due to the asymmetric arrangement of the array.

Row (d) shows the Fourier transforms of the ACFs G ()
plotted in Row (c) as functions of frequency in arbitrary
units (or 1/distance) to illustrate their difference in shape. We
refer to this function as the broadening spectrum. The pairs
with opposite wind direction show the symmetric appearance

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

TABLE I

PARAMETERS FOR NUMERICAL SIMULATION

Model Parameter Symbol Value  Unit
Frequency fo 47.0 MHz
Half wavelength c/2fo 3189 m
Wind velocity || 46.0 ms~?!
Sampling interval (in time) tA 128 ms
No. of samples in one DFT Nyt 128

Length of one DFT segment tA Nase 16384 s

No. of incoherent integrations  Nens 7

Interval in frequency fa = 1/taNag 0.061 Hz
Interval in velocity ¢/2fotaNagt 0.195 ms—?!
Spectral amplitude A 10.0

Spectral mean m 0.0

Spectral width o 1.0

Spectral noise floor Py, 1.0

with respect to zero in frequency corresponding to the phase
rotation in their ACFs. This means that the final Doppler
spectra have different frequency offsets depending on the wind
direction, even if the beam is vertical to the horizontal wind.

B. Estimating Doppler Spectra

The parameters to simulate “observed” spectra Rops[x] are
summarized in Table I. Employing the estimation algorithm
derived, we simulated Rons[x] given the Gaussian spectral
parameters A = 10, u = 0,0 = 1,and P, = 1. ¢ and ¢
are normalized by the frequency interval and dimensionless,
such that ¢ = 1 corresponds to fx in Hz. In the following
part, errors of the estimates with respect to x# and ¢ are also
given dimensionless unless units are accompanied explicitly.

In order to demonstrate the performance of our proposed
algorithm, we employed the LMS method without the debroad-
ening algorithm as a conventional technique for comparison.
The resulting estimates via our proposed and the conventional
algorithms are shown in Fig. 6. With respect to mean Doppler
shift x4 [see Fig. 6(a)], the estimates via our proposed algo-
rithm (blue) shows a very good agreement with the given
truth (x = 0.0) with a maximum absolute error of 0.02
(~4 mm/s), whereas the result from the conventional technique
(red) gives 0.25 (~49 mm/s). With respect to spectral width
o [see Fig. 6(b)], our proposed algorithm (blue) shows a very
good agreement with the given truth (¢ = 0.0) with maximum
absolute error of 0.05 (~9 mm/s), whereas the result from the
conventional technique (red) gives 0.80 (~157 mm/s).

Note that with the conventional technique an estimate of u
is biased as if the beam is tilted, whereas actually the array
is uniformly excited. This is because an asymmetric antenna
array has a deformed beam pattern in the near field having the
main spot of the beam off-centered. We would like to refer to
this effect as the pseudo tilt effect. In the example we demon-
strate above, the pseudo tilt angle corresponds approximately
to 0.06°. Since this effect disappears in the far-field at the
infinite range, it is not really reasonable to compensate for
the pseudo tilting using physical beam steering. Our proposed
method does not have the pseudo tilt issue because it solves
the inverse problem, which automatically takes this effect into
account.
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Fig. 5. Complex beam patterns (horizontal section), G(7) and F[G (7)], at height z = 6000 m, calculated with respect to PANSY radar, are plotted. Columns
1-6 are associated with an azimuthal rotation angle of 0°, 60°, 120°, ..., 300°, respectively. Rows: (a) Complex beam patterns (horizontal section) plotted

with a 2-D color code indicating phase by hue (cyclic color) and power in dB

by intensity. When the rotation angle is 0°, the x-axis agrees with the physical

x-axis. (b) Sections of the complex beam patterns plotted in row (a). Thin colored lines show the x-sections at different y intercepts. Thick black lines show
their RMS envelopes. (c) Sum of ACFs of the sections of the complex beam pattern, G () in the text, but plotted as functions of the distance in meter unit

along the x-axis. Blue and red lines indicate the real and imaginary parts, res
plotted as functions of wavenumber (1/m). The wavenumber can be converted

VI. DISCUSSION

We chose the PANSY radar as an instance to which the
proposed beam debroadening technique was applied because
the radar has an uneven and asymmetric antenna arrangement,
and consequently a complicated beam pattern that makes it
hard to evaluate the beam broadening effect. As the PANSY
radar has quite a large aperture of about 4501%, however,
the resulting broadening effect was rather small although
detailed quantitative discussions about the absolute signif-
icance of the broadening effect in relation with aperture
size and antenna arrangement are out of the scope of this
article. Note that, however in general, a radar with smaller
aperture has a larger broadening effect. A recent study by
Kohma et al. [15] showed that the turbulent spectrum variance
as small as 100 mm/s has a significant meaning in discussing
the energy dissipation rate. In addition, in the context of global
circulation, a subtle background velocity as small as 10 mm/s
can be significant. In such cases, our proposed method plays
a more significant role.

Furthermore, we would like to discuss the practical spectral
width and frequency resolution. With large aperture VHF
atmospheric radars, the typical time resolution is about 1 min.
Using the Blackman-Tukey method, for example, the fre-
quency resolution can be consequently as small as 1/60 Hz,

pectively. (d) Fourier transforms of the G(z) shown in Row (c), F[G(z)] are
to velocity simply by multiplying |u].

which corresponds to 0.05 m/s at a radar frequency of 47 MHz.
From the point of view of historically accumulated data,
to which the Bartlett or a similar method had been applied
due to the limitation in computational cost, the time resolution
had been about several to 10 s, which corresponds to around
0.3 m/s. In this article, we showed that our proposed method
works well even in such a case that the frequency resolution
in data is not well defined. In case one would like to begin an
observation accompanied by our proposed analysis technique,
it is recommended to define a higher frequency resolution.

We would also like to place some technical notes with
respect to the implementation of the proposed algorithm.
Calculating G(z) as a function of u (u,v,w), which
is a 3-D parameter, as well as beam direction and height,
is slightly computationally heavy. In a practical implemen-
tation, G(7) can be well approximated by first calculating
Ghor (&) corresponding only to the azimuth direction of the
wind ¢ = tan~!(v/u), second stretching it to obtain Gpe(7)
in accordance with the horizontal wind velocity (u,v), and
finally applying uniform phase rotation correspondingly to w
to obtain G(r). Thus, we can reduce the total computation
cost by preparing a practical set of Gpo(¢) corresponding
to a set of discrete azimuth direction, namely {Gpo (& ;)|
¢i =0,1,...,359 in degrees}, for example.
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Fig. 6. Estimates of (a) mean Doppler shift x# and (b) spectral width o
resulting from the simulations. In each panel, the red dashed and blue solid
curves denote the conventional LMS estimates (without debroadening) and
our proposed debroadening algorithm, respectively.

VII. CONCLUSION

We proposed a debroadening algorithm that estimates the
turbulence spectrum width from the observed spectral width.
By carefully examining the radar observation model from a
statistical point of view, we derived the elegant relationship
between the observation function (complex two-way radar
beam pattern), statistical properties of the turbulence, and the
length of the temporal window in the domain of the ACF
shown in (31). Based on the derived relationship, we con-
structed the debroadening algorithm using generic iterative
numerical inversion techniques. Although the algorithm was
intended for debroadening the width of observed spectra, our
numerical simulation showed that the algorithm also resolves
biases in the mean Doppler shift that arises when the array is
not symmetric. In this article, we employed a four-parameter
model as the turbulence spectrum. However, the technique
is not restricted to this model and can be enhanced to a
nonparametric method when sufficient data are provided. Our
proposed technique is already used in recent work [15].

APPENDIX A
DERIVATION OF BARTLETT PERIODOGRAM VIA ACFs

We briefly show the equality of the averaged periodograms
(the Bartlett method) and the Fourier transform of ACFs
similar to the Blackman—Tukey method.

Bartlett Spectrum via ACF

Let R:[v] be the ACF of the (th segment of a received
signal r.[n]. That is

N—-v—1
ST Hndredn 4w, forv >0
Rvl=1 v (39)
Z rilnlr;n+v], forv <0.

n=—v

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

The DFT of R-[v] becomes
N—1 -
Rix] = Z Z R[] exp<j27r W)
¢ v=1-N

N1
= ZZ R:[v]+ R:[v — N]) exp(]Zn—) (41)
¢ v=0

where the second equation is obtained because

(vEN)k } VK
— | = exp<]27t—) Y.
N N
Note that the divisor in the exponential function of the “DFT”
is N, and it does not agree with the length of the nonzero part
of R;[v], which is 2N — 1. This is because the independent
degrees of freedom of R:[v] are N, and this does not cause
any loss of information. If one applies the ordinary 2/N-point
DFT to R/[v], =N <v < N — 1, where R-[-N] = 0, the
points R[x] for k = odd in the resulting spectrum can be
calculated from the rest of the points R[x] for x = even just
by interpolating.

(40)

exp [ ion @2)

Bartlett Method

N—1 2

3R] = Z Zré-[n] exp(j27r %)

¢ In=0

-3 on(12e) |

n=0

X{NZIQ (] exp(jZn%)}

exp <j271’ w> }

(45)

N—1N—-n—1
_Z{Z Z rl [nlr:[n+v] exp(ﬂn_)}

n=0 v=—n

(43)

(44)

N—-1N-1

-S{E

n=0 n'=0

(46)

and by exchanging the order of summation with respect to n
and v in (46), we obtain (41).

APPENDIX B
FOURIER TRANSFORM OF GAUSSIAN FUNCTIONS

Let v and x be integer temporal and frequency variables,
respectively, ranging from [—N /2, N/2 — 1] for even N. The
four-parameter Gaussian spectral model can be defined as

(x — u)’

202 “7

Rlx] = Aexp [— ] + P,
where A, o, u, and P, are the amplitude, spectral width,
spectral moment, and noise level, respectively. Then, the cor-

responding ACF becomes
2o 2126%?
eXp| =7

Fv]=A + P, d[v]

42 (48)
N
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where J[v] is the discrete delta function, which is 6[0] = 1,
and 0[v] =0 V v # 0. These two functions form a DFT pair

Rlx] < F[v]. (49)

Unlike cases with an (analytic) Fourier transform, however,
this expression can hold only when the parameters are set
within a fair range because this expression is a simple analog
of a Fourier transform, in which the sampling theory and the
variable ranges are not considered. A practical fair range is,
for example

N N
—— < ux30 < —.

5 5 (50)
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