Evaluation of water flushing effect on icebreaking operation of "Shirase" by analysis of Japanese Antarctic Research Expedition voyage data

Seigo Yoshino¹, Hajime Yamaguchi¹, Shuki Ushio², Yutaka Yamauchi³, and Shigeya Mizuno³

¹Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan

²Meteorology and Glaciology Group, National Institute of Polar Research, Tachikawa, Japan

³Techncal Research Center, Japan Marine United Corporation, Tsu, Japan

Lützow-Holm Bay is sometimes coverd with very thick multiyear landfast ice. The Japanese Antarctic research icebreaker "Shirase II" has to break these thick ice to reach the Syowa Station. Shirase has a water flushing system in order to improve icebreaking performance. The aim of water flushing system is to decrease

the frectional resistance between ship hull and dry snow. Table 1 shows the friction coefficients between steel, sea ice, and snow(Yamauchi et. al., 2011; Yamauchi, 2013). It has been shown that frectional resistance can be reduced by watering from ship bow in ice tank model test. It is not

Table 1	friction	coefficients	between	steel,	sea	ice,
and sno	w					

Sea ice	Dry snow	Wet snow
0.04~0.06	0.21~0.28	0.09~0.22

necessarily clear, however, that the same fact can be said for a full-scale ship in actual ice conditions.

In this study, we analyze the data of actual icebreaking voyage of Shirase in Japanese Antarctic Research Expedition 60th (JARE60) and compare ship resistance in continuous icebreaking mode with and without watering.

Shirase's navigation data is recorded using a ship-monitoring system (SMS) that records basic navigation data such as ship ship speed, propeller shaft thrust, ship motions and GPS locations. We estimated the icebreaking resistance in continuous icebreaking by the following formula:

$$R_{total} = (T_r + T_l)(1 - t_v) - Ma \times 10^{-3}$$

The R_{total} is estimated icebreaking resistance. T_r and T_l are right and left shaft thrusts. *a* is acceleration of the ship. M is mass of Shirase, 17760×10^3 [kg]. Figure 1 shows ship speed, thrust, and icebreaking resistance of Shirase in one sequence of

continuous icebreaking. 23 sequences of continuous icebraking were conducted in JARE60 icebreaking test. We calculated average icebraking resistance 0 to 30 seconds before starting watering and 10 to 30 seconds after starting watering. Figure 2 shows the defference of average resistance in each sequence. We compare the average resistance beforewatering with after-watering in all sequences, and it is shown that icebreaking resistance decreases about 3.7% by watering. Table 2 shows average of icebreaking resistance with and without water flushing. Calculation of the t-test confirms that the defference of resistance is significant.

References

Y. Yamauchi, S. Mizuno, H. Tsukuda. (2011): The Icebreaking Performance of SHIRASE in the Maiden Antarctic Voyage, International society of offshore and polar engineers, pp. 1093-1099

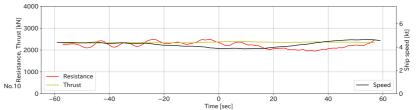


Fig. 1 Ship speed, thrust, and icebreaking resistance in continuous icebreaking

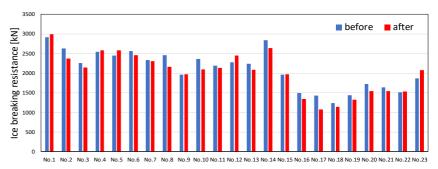


Fig. 2 Comparison of icebreaking resistance between with and without water flushing

Resistance before watering [kN]	Resistance after watering[kN]	Difference [kN]	Rate of change [%]
2102.48	2023.12	-78.36	-3.7

Y. Yamauchi (2013): Improvement in Technology on Icebreaker's Performance, Japanese journal of multiphase flow, Vol. 27, Issue 1, pp.11-17