INVESTIGATION OF THE WEATHERING EFFECT ON THE ⁴⁰Ar-³⁹Ar AGES OF ANTARCTIC METEORITES

Ichiro KANEOKA

Geophysical Institute, Faculty of Science, University of Tokyo, Yayoi 2-chome, Bunkyo-ku, Tokyo 113

Abstract: In order to examine the weathering effect on ⁴⁰Ar-³⁹Ar ages of Antarctic meteorites, the ⁴⁰Ar-³⁹Ar age patterns were compared for the outer and inner portions of two Antarctic meteorites (ALH-761, ALH-77288).

The results indicate that the oxidized outer portions show anomalously old ${}^{40}\text{Ar}{}^{39}\text{Ar}$ ages which exceed 4600 Ma in the intermediate temperature fractions of around 800–1000°C. These old ${}^{40}\text{Ar}{}^{39}\text{Ar}$ ages are accompanied by the increase of ${}^{36}\text{Ar}$, which is regarded to be mostly of atmospheric ${}^{36}\text{Ar}$. This might be explained by the incorporation of atmospheric Ar in hematite which was produced from goethite during neutron irradiation.

The inner relatively fresh portions show the following plateau ages: ALH-761,64, 4487 ± 50 Ma; ALH-77288,63, 4497 ± 40 Ma.

1. Introduction

Since the accidental discovery of 9 meteorites on bare ice near the Yamato Mountains, East Antarctica, by the Japanese Antarctic Research Expedition (YOSHIDA *et al.*, 1971), more than 5000 meteorites have been found by a series of meteorite search teams in Antarctica (*e.g.*, CASSIDY *et al.*, 1977; YANAI and NAGATA, 1982). They include most kinds of meteorites so far reported from the other areas and also many pieces of rare or new types of meteorites (YANAI and NAGATA, 1982). Hence, they surely add abundant treasure for meteorite research.

The meteorites were found on ice surfaces and their terrestrial ages have been estimated to be mostly of more than 10³ years (*e.g.*, FIREMAN, 1982; FIREMAN *et al.*, 1979; HONDA, 1981; NISHIIZUMI *et al.*, 1979). Hence, they are regarded to have been affected by the weathering to some extent. Such weathering effects on the chemical and mineral compositions have been reported (*e.g.*, GIBSON and KOTRA, 1982; GOODING, 1981; OLSEN *et al.*, 1978). However, such effects on radiometric ages have not yet been studied in detail. Although we try to use the most fresh portion in a meteorite specimen, it does not always guarantee that the selected portion is sufficiently fresh to get reliable radiometric ages. In the case of K-Ar systematics, such effects will be more severe compared with solid elements like Rb-Sr or Sm-Nd. So far, we have determined the radiometric ages of more than ten Antarctic meteorites by the ⁴⁰Ar-³⁹Ar method (KANE-OKA, 1980, 1981; KANEOKA *et al.*, 1979). The results seem to show an influence of weathering to some extent in a few cases. Hence, it is essential to examine the effect in more detail by comparing the ⁴⁰Ar-³⁹Ar ages between the fresh and the weathered portions from the same material. In this context, Antarctic meteorites offer us a unique opportunity for examining the effect of weathering, because some relatively large specimens are available for this purpose.

In the present study, two relatively large Antarctic meteorites were selected and the outer and the inner portions were used for ⁴⁰Ar-³⁹Ar age determinations and their results are compared in order to examine the weathering effects on the ⁴⁰Ar-³⁹Ar ages.

2. Samples

Two samples were selected for the present purpose on the basis of their relatively large sizes (original diameter, more than 10 cm), the apparently weathered surface portions with fresher inner portions and their availability.

The sample Allan Hills-761 (ALH-761) is an L6 chondrite whose schematic outline is sketched in Fig. 1. It is partly covered with fusion crusts. In the outer portions,

ALH-761(L6)

Fig. 1. The schematic sketch of the sample ALH-761(L6). The number indicates each portion. The portions 60 and 67 were used for chemical analyses (HARA-MURA, personal commun., 1982). In the present study, the portions 61, 62 and 64 were used. The numerical figures in parentheses indicate $H_2O(+)$ contents for each portion.

it has rusty parts which are regarded to be secondarily formed goethite. Even in the intermediate portion, such parts are observed. This sample had been separated into two parts and each of them has been kept at the National Institute of Polar Research, Japan and at the U.S.A. side, respectively. From the cut surface, samples 61, 62 and 64 were taken away for the present purpose. The portions 60 and 67 were used for chemical analyses of major elements by HARAMURA. According to his results (HARA-MURA, personal commun., 1982), no large difference is observed in the major components between 60 and 67 except for the $H_2O(+)$ content.

The other sample Allan Hills-77288 (ALH-77288) is an H6 chondrite, whose sche-

ALH-77288 (H6)

Fig. 2. The schematic sketch of the sample ALH-77288 (H6). Cut surface indicates that the other half was already detached from this block. The meanings of numerical figures are the same as in Fig. 1. matic outline is shown in Fig. 2. This sample had also been separated into two parts to be allocated to the Japan and the U.S.A. sides, respectively. As shown in Fig. 2, the cut surface is the part which corresponds to almost the innermost part for the sample. From this sample, two portions 62 and 63 were adopted for the present purpose. As described above, the portion 63 should represent a relatively fresh part of this meteorite, whereas the portion 62 should indicate the most weathered part. This sample also has some rusty parts in the outer portions.

3. Experimental Procedures

Each sample was arranged into grains of roughly 1–5 mm in size and wrapped in aluminium foil. They were stacked together with age standards MMhb-1 (hornblende, K-Ar age: 519.5 ± 2.5 Ma) (ALEXANDER *et al.*, 1978) on both sides to be able to monitor the neutron flux gradients, remelted CaF₂ and K₂SO₄ for estimating the correction factors for Ca- and K-derived interference Ar isotopes. They were vacuum sealed in quartz vials.

Samples were irradiated in the JMTR of Tohoku University for 25 days with the total fast neutron flux of 1.1×10^{19} nvt. After the cooling for 4 months, they were degassed and Ar isotopes were analyzed on a Reynolds type mass spectrometer (60°, 15 cm) with a Farady cup. Such experimental procedures were almost the same as those reported before (KANEOKA, 1980, 1981; KANEOKA *et al.*, 1979).

Before each sample analysis, blanks were taken and applied for the correction of the data. Blank levels are $(2-4) \times 10^{-8}$ cm³ STP ⁴⁰Ar below 1300°C, but increase up to $(7-9) \times 10^{-8}$ cm³ STP at the highest temperature (1550°C) for 45 minutes.

The amounts of Ar were estimated on the basis of the sensitivity of the mass spectrometer which was calibrated by the amount of radiogenic 40Ar in the standard sample. They include the uncertainty of about 30% based on their reproducibility. Mass discrimination among Ar isotopes ranged from 0.13% to 0.28% per atomic mass unit favoring lighter isotopes during the analyses for the present samples.

Based on the analyses of the CaF_2 and K_2SO_4 , the following correction factors were determined for Ca- and K-derived interference Ar isotopes.

and

 $({}^{38}\text{Ar}/{}^{39}\text{Ar})_{\text{K}} = (3.47 \pm 0.04) \times 10^{-2}$.

The amounts of trapped and spallogenic components were calculated by assuming that the ${}^{38}\text{Ar}/{}^{36}\text{Ar}$ ratios for trapped and spallogenic components are 0.187 and 1.5, respectively. ${}^{40}\text{Ar}$ was corrected for trapped (${}^{40}\text{Ar}/{}^{36}\text{Ar}=0.5\pm0.5$) and spallogenic (${}^{40}\text{Ar}/{}^{38}\text{Ar}=0.15\pm0.15$) components (PODOSEK and HUNEKE, 1973). In the present study, many fractions show that the ${}^{38}\text{Ar}/{}^{36}\text{Ar}$ ratio exceeds 1.5. In such a case, excess ${}^{38}\text{Ar}$ would be attributed to the production of ${}^{38}\text{Ar}$ by a reaction ${}^{37}\text{Cl}(n, \gamma\beta)$ ${}^{38}\text{Ar}$ and the remainder spallogenic. However, this assumption seems to be not always guaranteed in the present case due to relatively high neutron flux on samples. Hence, no expo-

Ichiro KANEOKA

sure ages are reported in the present study.

In order to identify the state of the sample, the H_2O content was measured by using the Karl-Fisher titration method for each portion. In this case, about a few mg of the aliquots of samples were used for H_2O measurements.

4. Results

All observed Ar isotopes and calculated ${}^{40}Ar - {}^{39}Ar$ ages are tabulated in Table 1 for each phase. Furthermore, the measured H₂O content and the estimated K- and Ca-contents are summarized in Table 2 together with the summary of some characteristic ${}^{40}Ar - {}^{39}Ar$ ages for each sample.

4.1. H_2O contents

The $H_2O(+)$ content was estimated as the difference between the measured total H_2O content and the $H_2O(-)$ content for a sample. In Figs. 1 and 2, the $H_2O(+)$ content is shown to demonstrate its variation at a different portion in a sample. For example, in the case of ALH-761, the outer portions show larger amounts of $H_2O(+)$ compared with the inner portions. This trend is consistent with the apparent difference in the amount of oxidized part for the sample. This means that the oxidized part probably includes some form of hydrates. Based on microscopic observations, such phase seems to be amorphous and probably be goethite or goethite-like minerals. Even the innermost portion of the sample ALH-761, the portion 64 shows the $H_2O(+)$ content of about 0.1%. Since the sample ALH-761 is an L6 chondrite, this amount is still too large to be accepted as completely fresh for this portion. This means that even the innermost portion might have been weathered to some extent.

For the sample ALH-77288, a similar tendency is observed. The outer portion 62 shows a larger $H_2O(+)$ content of about 0.6% compared with that of the inner portion 63 (0.1%). Such difference probably reflects the different degree of the production of secondary minerals like goethite.

4.2. ⁴⁰*Ar*-³⁹*Ar* ages

In Fig. 3, ⁴⁰Ar-³⁹Ar diagrams are shown for different portions of the sample ALH-761. As shown in Fig. 3, all three portions show generally similar ⁴⁰Ar-³⁹Ar age patterns except for some temperature fractions around 1000°C. The innermost portion 64 shows a plateau age of 4487 ± 50 Ma for 900–1100°C fractions. These fractions represent about 46% of the total released ³⁹Ar. At higher temperatures, the apparent ⁴⁰Ar-³⁹Ar ages decrease until about 4200 Ma. This may partly reflect the recoil effect as suggested by HUNEKE and SMITH (1976) and partly because of insufficient correction for Ca-derived interference Ar isotopes or blanks. This portion shows a total ⁴⁰Ar-³⁹Ar age of 4417 Ma, which is slightly younger than the plateau age. Hence, small amount of radiogenic ⁴⁰Ar loss is suggested from this portion.

On the other hand, the outermost portion 61 shows no definite plateau age, but a rather slight increase in the apparent ages up to the 900°C fraction. In the 1000°C fraction, however, this portion shows an old ⁴⁰Ar-³⁹Ar age of 4679 ± 18 Ma. Even in the 1100 and 1200°C fractions, the portion 61 shows a slightly older ⁴⁰Ar-³⁹Ar age of

	01, 01 (E0) 0. 0105 g,	J = 0. 05					
T (°C)	[⁴⁰ Ar] (×10 ⁻⁸ cm ³ STP/g)	³⁶ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	³⁷ Ar/ ⁴⁰ Ar (×10 ⁻³)	³⁸ Ar/ ⁴⁰ Ar (×10 ⁻²)	³⁹ Ar/ ⁴⁰ Ar (×10 ⁻³)	⁴⁰ Ar*/ ³⁹ Ar*	Age (Ma)
600	253	0.5458	9.129	7.960	5.761	173.6	4373
		±0.1190	±0.461	± 0.043	±0.191	± 5.8	± 56
700	967	0.6470	6.968	0.9960	5.796	172.5	4363
		± 0.0340	±0.119	± 0.0077	± 0.029	±0.9	± 15
800	1280	0.9001	6.342	0.2395	5.656	176.8	4403
		± 0.0285	± 0.094	± 0.0031	± 0.020	±0.6	± 14
900	962	0.8918	9.188	0.2175	5.609	178.3	4417
		± 0.0542	±0.539	± 0.0016	± 0.057	± 1.8	± 21
1000	915	5. 511	7.683	0.2862	4.790	208.8	4679
		± 0.045	±0.160	± 0.0019	± 0.036	±1.6	± 18
1100	571	6.366	21.88	1.182	5.235	191.0	4531
		± 0.092	±0.12	± 0.004	± 0.057	± 2.1	± 22
1200	102	10.97	39.74	2.583	5.252	190.4	4526
		± 0.20	±0.89	± 0.026	±0.181	±6.6	±59
1300	114	10.61	128.9	6.136	6.378	156.8	4207
		± 1.20	± 0.8	± 0.025	± 0.031	± 0.8	± 15
1550	324	23.07	403.1	10.20	6.684	160.6	4246
		±0.17	±4.2	±0.10	± 0.057	±1.5	± 20
Total	5488	3.871	35. 51	1.585	5.558	179.9	4431

Table 1. Ar isotopes in neutron-irradiated meteorite samples from Antarctica. ALH-761, 61 (L6) 0.8105 g, $J=0.05929\pm0.00046$

ALH-761,62 (L6) 0.5416 g, $J = 0.06098 \pm 0.00041$

T (°C)	^{[40} Ar] (×10 ⁻⁸ cm ³ STP/g)	³⁶ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	³⁷ Ar/ ⁴⁰ Ar (×10 ⁻³)	³⁸ Ar/ ⁴⁰ Ar (×10 ⁻²)	³⁹ Ar/ ⁴⁰ Ar (×10 ⁻³)	⁴⁰ Ar*/ ³⁹ Ar*	Age (Ma)
600	112	4. 477	15.59	12.48	5.914	169.6	4381
		±0.288	± 1.07	± 0.03	± 0.480	± 13.8	± 134
700	770	0.9416	7.880	1.278	5.979	167.5	4361
		± 0.0395	± 0.219	± 0.017	± 0.111	± 3.1	± 32
800	1064	0.7748	6.313	0.3128	5.725	174.9	4432
		± 0.0705	± 0.402	± 0.0050	± 0.070	± 2.1	± 21
900	1592	0.7270	6. 541	0.3293	5.526	181.2	4490
		± 0.0493	± 0.236	± 0.0049	± 0.048	±1.6	± 18
1000	1632	8.621	6.051	0.4629	4.295	233.2	4912
		±0.069	± 0.105	± 0.0154	± 0.033	± 1.8	± 17
1100	540	3. 707	19.53	1.867	5.481	183.2	4508
		±0.166	± 1.20	± 0.017	±0.122	±4.1	± 39
1200	184	8.880	65.55	6.622	5.563	182.2	4499
		±0.190	± 1.84	± 0.016	±0. 163	± 5.4	± 50
1300	155	16.78	247.9	12.09	6.712	155.5	4239
		±0.61	±2.4	± 0.15	± 0.251	±6.1	± 65
1550	286	40.22	500.6	15.55	5.338	209.6	4732
		±0.50	±2.6	±0.12	± 0.450	±24.4	±177
Total	6335	5. 533	37.78	1. 987	5.322	191.3	4579

Т (°С)	[⁴⁰ Ar] (×10 ⁻⁸ cm ³ STP/g)	³⁶ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	³⁷ Ar/ ⁴⁰ Ar (×10 ⁻³)	³⁸ Ar/ ⁴⁰ Ar (×10 ⁻²)	³⁹ Ar/ ⁴⁰ Ar (×10 ⁻³)	⁴⁰ Ar*/ ³⁹ Ar*	Age (Ma)
600	289	2.578	9.762	4.617	6.080	164.8	4381
		± 0.079	±0.199	± 0.011	± 0.047	± 1.3	± 16
700	636	0.9424	6.711	0.8142	5.778	173.3	4464
		± 0.1681	± 0.550	± 0.0128	± 0.085	± 2.6	± 24
800	1405	0.6131	7.037	0.2931	5.967	167.8	4411
		± 0.0296	± 0.063	± 0.0017	± 0.022	± 0.6	± 11
900	2008	0.6300	17.32	0.3412	5.682	176.6	4495
		± 0.0321	± 0.83	± 0.0055	± 0.082	± 2.6	± 25
1000	574	0.7743	8.889	0.4389	5.764	173.8	4469
		± 0.0755	± 0.626	± 0.0011	±0.109	± 3.3	± 33
1100	619	1.082	9.507	0.6157	5.732	174.8	4478
		± 0.079	±0.198	± 0.0031	± 0.090	±2.7	± 27
1200	491	2.549	22.39	1.618	6.046	166.1	4394
		± 0.050	± 0.38	± 0.020	± 0.083	±2.3	± 25
1300	213	9.055	106.5	4.639	6.731	151.3	4241
		± 0.069	± 1.4	± 0.025	±0.105	± 2.4	± 28
1550	421	31.08	515.5	9. 312	7.367	147.4	4199
		±0.14	± 1.2	± 0.048	± 0.144	± 3.1	± 36
Total	6656	3. 125	46.97	1.391	5.947	168.5	4417

Table 1. Continued.

ALH-761,64 (L6) 0.6981 g, $J=0.06276\pm0.00037$

ALH-77288,62 (H6) 0. 6967 g, $J = 0.04791 \pm 0.00029$

T (°C)	[⁴⁰ Ar] (×10 ⁻⁸ cm ³ STP/g)	³⁶ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	³⁷ Ar/ ⁴⁰ Ar (×10 ⁻³)	³⁸ Ar/ ⁴⁰ Ar (×10 ⁻²)	³⁹ Ar/ ⁴⁰ Ar (×10 ⁻³)	⁴⁰ Ar*/ ³⁹ Ar*	Age (Ma)
600	34.7	26.48	49.74	33. 38	5.107	198.0	4240
		±0.36	±1.34	± 0.25	±0.198	±7.8	± 65
700	111	4.131	158.5	4.090	4.346	240.0	4556
		±0.138	± 3.9	± 0.040	± 0.085	±4.9	± 35
800	1613	9.622	3.748	0.1767	2.974	336.7	5125
		± 0.110	± 0.087	± 0.0020	± 0.059	±6.7	± 35
900	487	33.05	1.353	0.05202	(0.1046)	(⁹⁶⁹⁹) (11083
		± 0.32	± 0.052	± 0.00786	(± 0.0621)	$\pm 5842/$	± 1084
1000	1018	0.5700	7.229	0.2304	4.365	229.5	4482
		± 0.0408	± 0.208	± 0.0021	± 0.113	± 6.0	± 44
1100	528	1.452	15.72	1.076	4.466	224.8	4448
		± 0.068	±0.55	± 0.009	±0.183	±4.2	± 33
1200	275	2.357	31.95	1.681	4.349	231.9	4499
		±0.150	± 0.82	± 0.005	±0.164	± 8.8	± 65
1300	644	3.246	52.12	1.828	4.434	228.6	4476
		±0.109	±0.59	± 0.013	± 0.071	±3.7	± 29
1550	1231	13.80	96.67	2.222	4.278	263.6	4555
		± 0.08	±0.64	± 0.008	± 0.045	±3.1	±128
Total	5941.7	9.079	34.18	1.200	3.636	271.0	4759

ALH-77288,63 (H6) 0. 6977 g, $J=0.04791\pm0.00029$									
T (°C)	[⁴⁰ Ar] (×10 ⁻⁸ cm ³ STP/g)	³⁶ Ar/ ⁴⁰ Ar (×10 ⁻⁴)	³⁷ Ar/ ⁴⁰ Ar (×10 ⁻³)	³⁸ Ar/ ⁴⁰ Ar (×10 ⁻²)	³⁹ Ar/ ⁴⁰ Ar (×10 ⁻³)	⁴⁰ Ar*/ ³⁹ Ar*	Age (Ma)		
600	90.6	26.70	-0.0656	0.2518	1.357	736.7	6479		
		±0.59	± 0.1587	± 0.0361	± 0.201	±109.1	± 260		
700	204	2.202	1.845	0.1082	4.087	244.7	4588		
		±0.195	± 0.070	± 0.0249	± 0.144	±8.6	±59		
800	619	0.8095	5.218	0.05865	4.118	243.2	4578		
		±0.1089	± 0.447	± 0.00676	± 0.072	±4.3	± 31		
900	666	0.5460	3.447	0.04560	4.015	249.3	4619		
		± 0.0638	± 0.430	± 0.00692	± 0.101	±6.3	± 43		
1000	1123	0.4472	4.348	0.07443	4.281	233.6	4511		
		± 0.0409	±0.670	± 0.00388	± 0.098	± 5.3	±39		
1100	894	1.345	10.70	0.3425	4. 321	232.1	4501		
		± 0.052	± 0.30	± 0.0110	± 0.039	± 2.1	± 18		
1200	189	2.403	21.79	0.8116	4.550	225.0	4449		
		±0.161	± 1.01	± 0.0500	± 0.100	± 5.1	±39		
1300	384	4. 519	41.39	1.360	4.362	231.7	4498		
		± 0.105	±0.75	± 0.004	± 0.024	±1.3	± 14		
1550	2480	9.362	69.93	1.771	4.047	252.0	4637		
		±0.043	±0.45	± 0.015	±0.094	±6.0	±41		
Total	6649.6	4.773	32.13	0.8376	4. 167	271.9	4764		

Table 1. Continued. $I=0.04791\pm0.00029$

1) All tabulated data have been corrected for the blanks and radioactive decay to ³⁷Ar between irradiation and analysis, but do not include other corrections.

⁴⁰Ar*/³⁹Ar* indicates a ratio of the radiogenic ⁴⁰Ar from the decay of ⁴⁰K (=⁴⁰Ar*) to the K-derived ³⁹Ar by a reaction of ³⁹K (n, p) ³⁹Ar (=³⁹Ar*).

3) The uncertainty represents one standard deviation.

Samula	[K]*	[Ca]*	H ₂ O (+)**	$(+)^{**}$ H ₂ O (-) (%) (%)	Total	⁴⁰ Ar- ³⁹ Ar age (Ma)***			Plataou rango	
Sample	(%)	(%)	(%)		Total	Min	Max	Plateau	Flateau Tange	
ALH-761 (L6) 61	0.073	0.89	0. 45	0.29	4431	4207 ±15	4679 ±18		_	
62	0.081	1.1	0.28	0.43	4579	4239 ±65	4912 ±17		—	
64	0.095	1.4	0.12	0. 58	4417	4199 ±36	4495 ±25	$\begin{array}{c} 4487 \\ \pm 50 \end{array}$	900–1100°C (46.2% of released ³⁹ Ar)	
ALH-77288										
62 (H6)	0.052	0.93	0. 64	0. 48	4759	4240 ±65	11083 ± 1084	$\begin{array}{r} 4466 \\ \pm 50 \end{array}$	1000–1300°C (49.4% of released ⁸⁹ Ar)	
63	0.067	0.98	(0. 1)	(1.5)	4764	4449 ±39	6479 ±260	4497 ±40	1000–1300°C (41.6% of released ^{\$9} Ar)	

Table 2. Summary of ⁴⁰Ar-³⁹Ar ages of Antarctic meteorites.

* K- and Ca-contents were estimated based on the total amounts of ³⁹Ar and ³⁷Ar of samples by comparing those of the standard sample MMhb-1. About 30% uncertainty is included in each value.

** $H_2O(+)$ contents were calculated by measuring total H_2O and $H_2O(-)$ contents based on Karl-Fisher titration method (TIBA, personal commun., 1983).

*** ⁴⁰Ar-³⁹Ar age was calculated by using following constants for ⁴⁰K (STEIGER and JÄGER, 1977). $\lambda_e = 0.581 \times 10^{-10} \text{ yr}^{-1}, \ \lambda_{\beta} = 4.962 \times 10^{-10} \text{ yr}^{-1}, \ ^{40}\text{K/K} = 1.167 \times 10^{-4}.$ Uncertainties in the ages correspond to 1σ .

Fig. 3. The ⁴⁰Ar-³⁹Ar age diagrams for the sample ALH-761. The uncertainties in the ⁴⁰Ar-³⁹Ar ages represent 1σ. Note the anomalously old ⁴⁰Ar-³⁹Ar ages in the 1000°C fractions for the portions 62 and 61.

about 4530 Ma compared with the plateau age of the portion 64. In the 1300 and 1550°C fractions, the apparent ⁴⁰Ar-³⁹Ar ages decrease suddenly down to about 4200 Ma. The apparent decrease in ⁴⁰Ar-³⁹Ar ages at higher temperatures would probably be attributed to the same reason as for the portion 64. However, the apparently old ⁴⁰Ar-³⁹Ar age which exceeds 4600 Ma requires some explanation.

The intermediate portion 62 also shows an anomalously old ⁴⁰Ar-³⁹Ar age in the 1000°C fraction. In this case, the apparent ⁴⁰Ar-³⁹Ar age becomes up to 4900 Ma. In the 1300°C fraction, this portion also shows a young ⁴⁰Ar-³⁹Ar age of about 4240 Ma. In the 1550°C fraction, the ⁴⁰Ar-³⁹Ar age increases to 4732 Ma. However, the analytical uncertainty in the age is relatively large for this fraction (177 Ma as 1σ). Hence, we cannot regard this apparently old ⁴⁰Ar-³⁹Ar age as a real one. Probably, we can attribute the apparent variation in the observed ages at higher temperatures to the same reason as for the other two portions. However, the apparently old ⁴⁰Ar-³⁹Ar ages seen at the same intermediate temperature around 1000°C as the portion 61 require some other explanation. The portions 61 and 62 include oxidized parts and contain larger amounts of $H_2O(+)$, which suggests that these portions might have been affected by weathering to some extent. The relatively fresh part 64 shows a plateau age without showing any such old ⁴⁰Ar-³⁹Ar age even in the 1000°C fraction. Hence, the apparently old ⁴⁰Ar-³⁹Ar ages for the fractions around 1000°C of the outermost and the intermediate portions 61 and 62 seem to be related to some secondary effects caused by the weathering of the specimen. This point will be discussed later.

In Fig. 4, the ⁴⁰Ar-³⁹Ar age diagrams for the sample ALH-77288 are shown. The inner portion 63 shows a slightly older ⁴⁰Ar-³⁹Ar age at lower temperatures, but indicates a plateau age of 4497 ± 40 Ma for $1000-1300^{\circ}$ C, which covers about 42% of the released total ³⁹Ar. At the highest temperature, it shows an old ⁴⁰Ar-³⁹Ar age of 4637 ± 41

Fig. 4. The ⁴⁰Ar-³⁹Ar age diagrams for the sample ALH-77288. Note the anomalously old ⁴⁰Ar-³⁹Ar ages in the 800 and 900°C fractions for the portion 62. For the portion 63, these temperature fractions also show slightly older ⁴⁰Ar-³⁹Ar ages than the higher temperatures. The apparently old ⁴⁰Ar-³⁹Ar ages in the highest temperature fractions for both portions 62 and 63 include relatively large uncertainties of Ca-derived interference Ar isotopes together with blank corrections. Hence, these cases are not discussed in detail in the text.

Ma, which seems too old to be accepted as a meaningful age. Since the highest temperature fraction is most easily affected by the experimental uncertainties caused by the corrections for Ca-derived interference Ar isotopes and blanks, we cannot take the face value for this fraction seriously, unless it shows a moderate value. For this sample, the lowest temperature fraction shows a very old $^{40}\text{Ar}-^{39}\text{Ar}$ age of 6479 ± 260 Ma, which probably reflects an atmospheric contamination.

On the other hand, the sample ALH-77288,62 indicates an anomalously old ⁴⁰Ar-³⁹Ar age of more than 11000 Ma in the 900°C fraction. Even in the 800°C fraction, the apparent ⁴⁰Ar-³⁹Ar age corresponds to 5125 ± 35 Ma. These old ages cannot be regarded to have any chronological significance, because they appear only in the limited portion of a sample, where some weathering effects seem to have worked. For this sample, an apparent plateau age of 4466 ± 50 Ma is obtained for 1000–1300°C, which corresponds to about 49% of the total released ³⁹Ar and agrees with that of the portion 63 within their analytical uncertainties.

As shown above for both samples ALH-761 and ALH-77288, the anomalously old ⁴⁰Ar-³⁹Ar ages which exceed 4600 Ma are observed only in such portions that seem to have been affected by weathering to some extent. No such old ⁴⁰Ar-³⁹Ar ages have been observed in relatively fresh portions except for the lowest temperature fraction for the sample ALH-77288,63. Hence, it is reasonable to assume that such apparently too old ⁴⁰Ar-³⁹Ar ages should reflect some state of samples resulting from weathering of the samples. Terrestrial atmospheric contamination is the most likely effect to Ichiro Kaneoka

explain such old ⁴⁰Ar-³⁹Ar ages and this point shall be discussed in more detail later.

As shown in Figs. 3 and 4, anomalously old ⁴⁰Ar-³⁹Ar ages are observed for some

Fig. 5b. The release patterns of Ar for the sample ALH-761,62. Note the anomalously large increase of ³⁶Ar at 1000°C with a slight deviation of ⁴⁰Ar from ³⁹Ar release pattern at the same temperature.

4.3. Release patterns of Ar isotopes

portions which seem to have been affected by weathering. In this context, it is interesting to compare the release patterns of Ar isotopes for portions which include both the weathered and relatively fresh ones.

In Fig. 5a, the release patterns of Ar isotopes for ALH-761,64 are shown. ⁴⁰Ar and ³⁹Ar show almost similar release patterns with the largest release at 900°C. On the other hand, large fractions of more than 50% of Ar were degassed at the highest temperature (1550°C) for both ³⁷Ar and ³⁶Ar. Since ³⁷Ar is a Ca-derived component, this indicates that ³⁶Ar would also be trapped in a phase in which most Ca is included. Although slight increase is observed at 900°C in the released fraction for both ³⁷Ar and ³⁶Ar, those fractions do not exceed 10% for both Ar isotopes.

In contrast with the sample ALH-761,64 the portion 62 shows a completely different release pattern of ³⁶Ar. As shown in Fig. 5b, the released fraction of ³⁶Ar is anomalously high at 1000°C, where the apparent old ⁴⁰Ar-³⁹Ar age is observed in Fig. 3 for this portion. About 40% of ³⁶Ar is degassed at 900°C, whereas other Ar isotopes generally show similar release patterns to the portion 64. The released fraction of ⁴⁰Ar is slightly different from that of ³⁸Ar at 900°C.

For the sample ALH-761,61, the obtained release patterns of Ar are similar to those of the portion 62 (Fig. 5c). In this case, ³⁶Ar of more than 15% is degassed at 900 and 1000°C at which temperatures old ⁴⁰Ar-³⁹Ar ages are observed for this portion in Fig. 3. The release patterns of ⁴⁰Ar and ³⁹Ar are almost similar to each other. ³⁷Ar shows almost the same release pattern to those for the portions 64 and 62.

These results on the release patterns of Ar isotopes imply that anomalously old ⁴⁰Ar-³⁹Ar ages observed at around 1000°C for the samples ALH-761,62 and 61 are correlated with the large increase of the ³⁶Ar degassing at the same temperature. Since the relatively fresh innermost portion 64 shows no such trend, the apparent old ⁴⁰Ar-³⁹Ar age and the increase of the ³⁶Ar seem to be related to some weathering effect like the addition of atmospheric components. However, such components are generally expected to be degassed at lower temperatures. Hence, the problem remains why such components are degassed at intermediate temperatures around 1000°C for the samples ALH-761,62 and 61.

In the case of the sample ALH-77288, a similar phenomenon is observed. In Fig. 6a, the release patterns of Ar isotopes for the inner portion 63 are shown. The release patterns of ⁴⁰Ar are correlated well with those of ³⁹Ar. Large amounts of ³⁷Ar and ³⁶Ar of more than 70% of the total amounts are degassed at the highest temperature. At the lowest temperature, ³⁶Ar is degassed about 10%. Such an increase in the ³⁶Ar degassing seems to reflect an apparently old ⁴⁰Ar-³⁶Ar age in the 600°C fraction for this sample (Table 1). Except for the 600°C fraction, the release patterns of ³⁷Ar and ³⁶Ar are correlated well with each other.

Compared with the inner portion 63, the outer portion 62 shows more complicated release patterns. Although two peaks are observed for both ⁴⁰Ar and ³⁹Ar in the released patterns at 800 and 1000°C, their release patterns generally show almost the same variations in Fig. 6b. The release pattern of ³⁷Ar is also similar to that of the other portion 63. However, the released fractions of ³⁶Ar increase up to about 30% at 800 and 900°C. Anomalously old ⁴⁰Ar-³⁹Ar ages are also observed in these temperature fractions. Hence, anomalously old ⁴⁰Ar-³⁹Ar ages again are correlated with the large

fraction of ³⁶Ar in the intermediate temperature fractions. Since such a phenomenon is observed only for the outer portion 62 of the sample ALH-77288, it is conjectured to be related to the weathering effect like the addition of the atmospheric Ar for this portion. This is the same tendency as the sample ALH-761. Then, it is necessary to explain why such an effect due to the atmospheric contamination is observed at the intermediate temperatures instead of at the lower temperatures. This point shall be discussed later.

4.4. K and Ca concentrations

The K- and Ca-contents for each portion of the two samples were estimated based on the comparison of the total amounts of K-derived ³⁸Ar and Ca-derived ³⁷Ar of a specimen with those of the standard sample MMhb-1.

The following relationship is observed for the present samples:

$$K/Ca = (0.53 \pm 0.02)^{39} Ar^*/^{37} Ar$$
.

This is almost the same value as reported before (KANEOKA, 1980, 1981; KANEOKA et al., 1979).

In Table 2, the estimated K- and Ca-contents are summarized together with ⁴⁰Ar-³⁹Ar ages. Apparently, both K- and Ca-contents seem to decrease from the inner portion to the outer portion systematically. One may argue that this reflects some weathering effects on the chemical compositions. Since these values include the analytical uncertainty of about 30%, however, it is difficult to attribute any significance in the apparent differences in the observed data.

5. Discussion

As shown in the previous section, the present samples indicate plateau ages for the relatively fresh inner portions at higher temperatures. However, the apparently oxidized outer portions show anomalously old ⁴⁰Ar-³⁹Ar ages in the intermediate fractions around 800–1000°C. Furthermore, they are accompanied by the increase in the released fraction of ³⁶Ar. When such an increase in the apparent ⁴⁰Ar-³⁹Ar age is observed to be accompanied by that of ³⁶Ar in the lower temperature fraction, it is common to attribute the effect to the terrestrial atmospheric contamination on the sample. For example, the old ⁴⁰Ar-³⁹Ar age in the 600°C fraction of the sample ALH-77288,63 can be explained by this mechanism. Such components are regarded to be retained in a phase which was formed secondarily and to be adsorbed on the surface, but cannot be desorbed during the preheating of a sample.

In the present case, however, the old ⁴⁰Ar-³⁹Ar ages which exceed 4600 Ma occur in the intermediate temperature fractions mostly. For the sample ALH-761,62, the 1000°C fraction shows an old ⁴⁰Ar-³⁹Ar age of 4912±17 Ma together with the abrupt increase of ³⁶Ar as shown in Fig. 5b. If we correct for the amount of ⁴⁰Ar by assuming that all the observed ³⁶Ar represents the atmospheric Ar, the apparent ⁴⁰Ar-³⁹Ar age decreases down to 4421 Ma. Since 900 and 1100°C fractions show the ⁴⁰Ar-³⁹Ar ages of 4490–4500 Ma, the corrected age for the 1000°C fraction is slightly too low, but is a reasonable value if we take into account the existence of some amount of trapped and/ or cosmogenic components in this fraction. Similarly, the absurdly old ⁴⁰Ar-³⁹Ar age of 11083 Ma can be decreased down to 4462 Ma for the 900°C fraction of the sample ALH-77288,62 by correcting for the amount of ⁴⁰Ar based on the same assumption as described above. In the same manner, all very old ⁴⁰Ar-³⁹Ar ages of more than 4600 Ma are decreased down to ages with the order of 4200–4500 Ma after applying the terrestrial atmospheric air correction based on the same assumption stated above. Hence, those old ⁴⁰Ar-³⁹Ar ages probably attributed to the incorporation of the terrestrial atmospheric Ar and to the calculation of ages by neglecting this effect.

Then, the problem is raised why such atmospheric components are observed in the intermediate temperatures around 800–1000°C for the present samples. Although these temperatures are slightly different between the samples ALH-761 and ALH-77288, they would probably reflect their different physical and chemical properties. If such atmospheric contamination occurred due to the adsorption of the terrestrial atmosphere on the surface of the sample or the formation of some secondary minerals, it is generally considered to be degassed at lower temperatures. Hence, to explain the present phenomenon, some phases which are more retentive for atmospheric Ar than the normal secondary minerals are required.

Related to this problem, it is noteworthy that goethite is reported to change into hematite under some conditions. TAYLOR and BURTON (1976) examined the stability of FeO·OH phases including goethite, which are considered to be the secondary products in both meteorites and lunar rocks. According to their experiments, goethite has been found to change into hematite after 125 days at 135°C and after 19 days at 165°C. Although they report only two examples concerning this reaction, it will be possible to apply for the present samples. Samples were irradiated by neutron in the JMTR for 25 days with the maximum temperature of about 300°C. Although we do not know the exact averaged temperature in the reactor, it is expected to exceed 200°C judging from the reported maximum temperature. Hence, it is quite likely that goethite has changed into hematite during neutron irradiation as is expected from the condition for the reaction (Fig. 7). Since goethite has a chemical form of FeO \cdot OH, it is expected

Fig. 7. The relationship between the temprerature and the time for each reaction. Each line indicates that at least in the field above the line, each reaction is expected to proceed (after the data by TAYLOR and BURTON, 1976).

to contain a relatively large amount of atmospheric Ar in it and adsorb some amount on the surface due to the hydration of metal iron phase. Such atmospheric Ar would be once desorbed during the change into hematite. However, the present samples were sealed in quartz vials in vacuum, and the desorbed atmospheric Ar was kept in the quartz vials. Since hematite was formed under such a condition, it would include some amounts of atmospheric Ar during its formation. Furthermore, hematite is much more stable for temperature than goethite. Hence, the atmospheric Ar trapped in hematite will be degassed at much higher temperature compared with that of goethite. Thus, relatively high degassing temperatures of around 800–1000°C for atmospheric Ar in the present samples might be explained if we assume the process described above. Such situation is schematically shown in Fig. 8. Since we could not repeat the experiments under the same condition due to the limited availability of JMTR and the prohibition of handling the irradiated materials in the open-air to examine the structure by using X-ray analyses, the present process remains as a possibility.

These inferences suggest that such an anomalously old ⁴⁰Ar-³⁹Ar age is not always limited to Antarctic meteorites but might be found in meteorites which were exposed

Fig. 8. Schematic diagram to show a process which might have occurred during neutron irradiation for the present samples. The lower part indicates schematic figures to show a change in the released pattern of atmospheric Ar.

on the terrestrial surface for some time during which goethite or some secondary phases are formed in it. Hence, we should be very careful in interpreting the result of ⁴⁰Ar-³⁹Ar ages for such a meteorite. As shown in Fig. 8, if goethite has already changed into hematite after neutron irradiation, preheating of a meteorite sample before Ar analyses does not change the present situation. If the transformation of goethite into hematite is undertaken in vacuum at an appropriate preheating temperature before neutron irradiation, such an effect may be reduced, but we have no guarantee for the complete retention of radiogenic ⁴⁰Ar in that case.

Acknowledgments

I appreciate the kindness of Prof. T. NAGATA and Dr. K. YANAI of the National Institute of Polar Research in providing me the samples used in this study. Dr. YANAI offered me a special effort to prepare suitable portions of each meteorite for the present purpose. I also thank Dr. T. TIBA of the National Science Museum, who made it possible to analyze H₂O contents of the present samples by the Karl-Fisher titration method. I am grateful to Mr. H. HARAMURA of Geological Institute, University of Tokyo, who informed me of his unpublished results on chemical analyses.

This study is financially supported in part by the Ministry of Education, Science and Culture under the contract No. 00539014.

References

- ALEXANDER, E. C., Jr., MICKELSON, G. M. and LANPHERE, M. A. (1978): MMhb-1; A new ⁴⁰Ar-³⁹Ar dating standard. U.S. Geol. Surv. Open-File Rep., 78-701, 6-9.
- CASSIDY, W. A., OLSEN, E. and YANAI, K. (1977): Antarctica; A deep freeze storehouse for meteorites. Science, 198, 727-731.
- FIREMAN, E. L. (1982): Carbon-14 ages of Antarctic meteorites. Meteoritics, 17, 212-213.
- FIREMAN, E. L., RANCITELLI, L. A. and KIRSTEN, T. (1979): Terrestrial ages of four Allan Hills meteorites; Consequences for Antarctic ice. Science, 203, 453-455.

- GIBSON, E. K., Jr. and KOTRA, R. K. (1982): Organic chemistry, carbon and sulfur abundances of Antarctic meteorites; Implications for post-fall history. Meteoritics, 17, 220–221.
- GOODING, J. L. (1981): Mineralogical aspects of terrestrial weathering effects in chondrites from Allan Hills, Antarctica. Proc. Lunar Planet. Sci. Conf. 12B, 1105–1122.
- HONDA, M. (1981): Terrestrial history of Antarctic meteorites recorded in the cosmogenic nuclides. Geochem. J., 15, 163-181.
- HUNEKE, J. C. and SMITH, S. P. (1976): The realities of recoil; ³⁹Ar recoil out of small grains and anomalous age patterns in ³⁹Ar-⁴⁰Ar dating. Proc. Lunar Sci. Conf. 7th, 1987-2008.
- KANEOKA, I. (1980): ⁴⁰Ar-³⁹Ar ages of L and LL chondrites from Allan Hills, Antarctica: ALHA-77015, 77241 and 77304. Mem. Natl Inst. Polar Res., Spec. Issue, **17**, 177–188.
- KANEOKA, I. (1981): ⁴⁰Ar-³⁹Ar ages of Antarctic meteorites: Y-74191, Y-75258, Y-7308, Y-74450 and ALH-765. Mem. Natl Inst. Polar Res., Spec. Issue, **20**, 250–263.
- KANEOKA, I., OZIMA, M. and YANAGISAWA, M. (1979): ⁴⁰Ar-³⁹Ar studies of four Yamato-74 meteorites. Mem. Natl Inst. Polar Res., Spec. Issue, **12**, 186–206.
- NISHIIZUMI, K., ARNOLD, J. R., ELMORE, D., FERRARO, R. D., GOVE, H. E., FINKEL, R. C., BEUKENS, R. P., CHANG, K. H. and KILIUS, L. R. (1979): Measurement of ³⁶Cl in Antarctic meteorites and Antarctic ice using a Van de Graaff accelerator. Earth Planet. Sci. Lett., 45, 285–292.
- OLSEN, E. J., NOONAN, A., FREDRIKSSON, K., JAROSEWICH, E. and MORELAND, G. (1978): Eleven new meteorites from Antarctica, 1976–1977. Meteoritics, 13, 209–225.
- PODOSEK, F. A. and HUNEKE, J. C. (1973): Argon 40-argon 39 chronology of four calcium-rich achondrites. Geochim. Cosmochim. Acta, 37, 667-684.
- STEIGER, R. H. and JÄGER, E. (1977): Subcommission on geochronology; Convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett., 36, 359–362.
- TAYLOR, L. A. and BURTON, J. C. (1976): Experiments on the stability of FeOOH on the surface of the moon. Meteoritics, 11, 225-230.
- YANAI, K. and NAGATA, T. (1982): Collections and curation of Yamato meteorites. Meteoritics, 17, 300-301.
- YOSHIDA, M., ANDO, H., OMOTO, K., NARUSE, R. and AGETA, Y. (1971): Discovery of meteorites near Yamato Mountains, East Antarctica. Nankyoku Shiryô (Antarct. Rec.), 39, 62-65.

(Received May 10, 1983; Revised manuscript received August 2, 1983)