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Abstract

A method for U–Pb isotopic dating using secondary ion mass spectrometer (SIMS)

was developed for uraninite. Correlation between 251(UO)+/235U+ and 206Pb+/235U+

obtained by a sensitive high-resolution ion microprobe (SHRIMP) was adopted for a

calibration from secondary ion ratios (Pb+/U+) to the atomic abundance ratios (Pb/U).

In this study, a uraninite sample (206Pb/238U = 0.1647) collected from Faraday mine,

Bancroft, Canada, is used as a reference material for the U–Pb calibration. The

established method was applied to three uraninite samples collected from the Cha-

rdon, Ecarpière, and Mistamisk mines. The calibrated 206Pb*/238U ratios of the three

uraninites show correlation with Pb/U elemental ratios obtained using an electron

probe microanalyzer (EPMA) (correlation coefficients: 0.98, 0.99, and 0.97, respec-

tively), which indicates the reliability of the SHRIMP calibration method used in this

study. The analysis of Ecarpière uraninite provides concordant U–Pb data, and a

weighted average of the 206Pb*/238U age is 287 Ma ±8 Ma (95 % conf.) which is con-

sistent with the previous chronological results by SIMS. Mistamisk uraninite provides

discordant U–Pb data with the upper and lower intercept ages of 1 729 and 421 Ma,

which correspond to uraninite formation in association with the Hudsonian orogeny

and the remobilization of uranium as pitchblende, respectively. The U–Pb age of Cha-

rdon uraninite (315 Ma) is consistent with the igneous activity of Mortagne granite,

but is older than the previously reported age (264 Ma). Marcasite in the Chardon ura-

ninite altered to goethite under the oxidizing condition, which indicates that U–Pb

system in the uraninite crystallized at 315 Ma was disturbed under the oxidizing con-

dition. The established calibration method using Faraday uraninite is useful for U–Pb

isotopic dating on the scale of a few micrometers to tens of micrometers, which

make it possible to obtain the accurate age of uraninite.

K E YWORD S
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1 | INTRODUCTION

U–Pb dating of uraninite and pitchblende (UO2 – U3O8) provides valu-

able information on the formation of uranium deposits (e.g., Förster &

Haack, 1996; Kotzer & Kyser, 1993) and on the elemental mobiliza-

tion association with the alteration in uraninite. The understanding of

uranium mobilization provides important information on studies of

the safe disposal of radioactive wastes from nuclear plants
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(e.g., Hidaka, Horie, & Gauthier-Lafaye, 2007; Horie & Hidaka, 2004).

Moreover, the timing of uranium mineralization from the Archean to

the Paleoproterozoic period is a good indicator of atmospheric oxygen

evolution because uranium is mobilized as a uranyl ion ([UO2]
2+) only

under oxidizing conditions (e.g., Bekker et al., 2004; Holland,

1984, 1999).

The chronological studies on uraninites have been carried out by

chemical dating, Pb isotopic dating and U–Pb dating. In the first

reports on absolute age determination in geology, the chronological

studies on uraninite were carried out by applying chemical dating

(e.g., Holmes, 1911). The chemical dating is still a useful technique

with an electron probe microanalyzer (EPMA) for U and Th rich min-

erals, such as monazite in magmatic, metamorphic, and sedimentary

rocks (e.g., Braun, Montel, & Nicollet, 1998; Cocherie & Albarede,

2001; Cocherie, Legendre, Peucat, & Kouamelan, 1998; Montel,

Veschambre, & Nicollet, 1994; Rhede, Wendt, & Förster, 1996;

Suzuki & Adachi, 1991; Suzuki, Adachi, & Kajizuka, 1994; Suzuki,

Adachi, & Tanaka, 1991). The advantage of microanalysis is that it

enables us to make measurements of ages on the scale of a few

micrometers to tens of micrometers, considering mineralogical fea-

tures. Chemical dating by using EPMA is useful for uraninite as the

uraninite sometimes shows complex chemical texture resulted by mul-

tistage mineralization and alteration (e.g., Bowles, 1990; Förster,

1999; Kempe, 2003). However, only few studies on the chemical dat-

ing of uraninite have been carried out (e.g., Bowles, 1990; Förster,

1999; Kempe, 2003; Parslow, 1982; Yokoyama, Shigeoka, Otomo,

Tokuno, & Tsutsumi, 2016). Significant problems arising in chemical

dating by using EPMA analysis are as follows: (i) The common Pb cor-

rection cannot be applied; (ii) It is difficult to consider the redistribu-

tion of U and Pb compared with isotopic dating because EPMA

analysis cannot determine the isotopic ratio, such as 207Pb/206Pb,
206Pb/238U, and 207Pb/235U, which enable us to find discordant data.

Thus, it is difficult to study the disturbance in a U–Pb system in urani-

nite. Usually, concordant U–Pb data of uraninite is not obtained by Pb

loss, recrystallization, and the change in the chemical composition due

to the alteration enhanced by radiation damage. In order to address

these issues and to discuss the exact and detailed age of uraninite,

U–Pb isotopic dating has to be carried out on the scale of a few

micrometers to tens of micrometers using secondary ion mass

spectrometers.

Over the past three decades, the isotopic analysis of uraninite by

secondary ion mass spectrometry (SIMS) has provided precise chrono-

logical information on the migration of uranium in association with

geological events (Cathelineau, Boiron, Holliger, & Poty, 1990; Evins,

Sunde, Schöberg, & Fayek, 2001; Fayek, Harrison, Ewing, Grove, &

Coath, 2002; Fayek, Harrison, Grove, & Coath, 2000; Fayek, Kyser, &

Riciputi, 2002; Fourel, Lancelot, Allegre, & Dupre, 1988; Holliger,

1988, 1992, 1994; Holliger & Cathelineau, 1986, 1987, 1988; Horie &

Hidaka, 2004; Horie, Hidaka, & Gauthier-Lafaye, 2004; Meddaugh,

1983). The calculation of the 206Pb/238U age by SIMS analysis is gen-

erally complicated by the fact that the ionization efficiency of second-

ary ions varies mainly with the chemistry and the structure of the

target minerals. To correct this effect, a suitable calculation method

and reference materials are required to calibrate the measured sec-

ondary ion ratio (Pb+/U+) to the atomic abundance ratio (Pb/U). In the

U–Pb isotopic analysis of uraninite, the relative sensitivity factor (RSF)

approach is employed to calculate Pb/U (Fayek, Kyser, & Riciputi,

2002; Holliger, 1988). Holliger (1988) has suggested a linear correla-

tion between (206Pb/238U) and (206Pb+/270[UO2]
+) in pitchblendes and

uraninites on the basis of experimental results. Fayek, Kyser, and

Riciputi (2002) have introduced another calibration method that is

based on the exponential correlation between (206Pb/238U) and

(206Pb+/238U+). However, it has been reported that it is difficult to

achieve highly accurate calibration of Pb/U using the RSF approach.

For example, even if a target material has homogeneous Pb/U, Pb+/

U+ differs in the analyzed regions, particularly if a high primary ion

current is used (e.g., Williams, 1998).

The highly accurate calibration on zircon U–Pb dating has been

established using a sensitive high-resolution ion microprobe

(SHRIMP), providing precise magmatic ages and detailed thermal his-

tory of crustal materials (e.g., Compston, Williams, & Meyer, 1984;

Stern, 1998; Williams, 1998). For the analysis with SHRIMP, the

empirical relationship observed between 206Pb+/238U+ and
254(UO)+/238U+ has been conventionally used for the calibration of

Pb/U. Compston et al. (1984) have proposed a linear correlation for

the calibration and determined the Pb/U ages of the lunar highland

breccias. This relationship has been considered to obey a power law

of the form 206Pb+/238U+ = a(254(UO)+/238U+)2 (Claoué-Long, Comp-

ston, Roberts, & Fanning, 1995). Stern and Amelin (2003) have

reported that the calibration using the relationship between
206Pb+/270(UO2)

+ and 254(UO)+/238U+ reduces the analytical uncer-

tainties in the 206Pb/238U ratios. A similar calibration approach is

applicable to several types of U-bearing minerals such as monazite

(e.g., DeWolf, Belshaw, & O'Nions, 1993; Williams, Buick, & Cart-

wright, 1996), titanite (e.g., Horie, Hidaka, & Gauthier-Lafaye, 2008;

Kinny, McNaughton, Fanning, & Maas, 1994), baddeleyite

(e.g., Wingate, Campbell, Compston, & Gibson, 1998), and apatite

(e.g., Horie et al., 2008; Sano, Oyama, Terada, & Hidaka, 1999).

The calibration from Pb+/U+ to Pb/U requires a matrix-matched

reference material which has a homogeneous and concordant
206Pb*/238U ratio (Pb* indicates the radiogenic Pb portion) from the

submicrometer to the intergranular scale. However, finding a uraninite

sample used as the reference material for the U–Pb analysis appears

to be difficult as the U–Pb system of uraninite is often disturbed by

the rapid Pb diffusion in uraninite (Brandt & Pershinov, 1968;

Janeczek & Ewing, 1995; Yershov, 1974) and the high solubility of

uranium under oxidizing conditions (e.g., Langmuir, 1978). In addition,

the redistribution of Pb in the uranium matrix may be considerably

enhanced by the radiation damage due to the α-decay of U. In this

study, we evaluate possible reference materials for SHRIMP uraninite

U–Pb dating.

In order to eliminate ambiguities due to the calibration and matrix

effects in SIMS analysis, Meddaugh (1983) has suggested another

technique, which has been refined by Fayek et al. (2000), that com-

bines the SIMS analysis of the Pb isotopic composition and the EPMA

analysis of Pb/U elemental ratio, and provides the U–Pb
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concentrations without the calibration of the secondary ion yields for

U+ and Pb+. The Pb concentration can be analyzed using EPMA with a

stable Pb reference material, such as natural crocoite (PbCrO4) or

even pure Pb metal. The disadvantages of this analytical method are

that (i) exactly the same spots must be analyzed in both the EPMA

and SIMS, which is difficult and also increases the efforts involved;

(ii) the sampled volumes in the EPMA and SIMS analyses are usually

different; and (iii) this method cannot be applied to samples that have

undergone nuclear reactions, such as the Oklo uranium deposit at

Gabon.

In this study, we try to establish a calibration method for the U–

Pb isotopic analysis of uraninite using SHRIMP. We utilize the calibra-

tion method similar to that used in the SHRIMP zircon U–Pb dating.

As compared to the RSF approach, more accurate results are obtained

with an appropriate reference material and calibration method. In

order to validate the calibration method, the U–Pb analyses are car-

ried out for three uraninite samples from the Chardon, Ecarpière, and

Mistamisk mines.

2 | SAMPLE DESCRIPTION

2.1 | Faraday uraninite

The uraninite sample collected from the Faraday mine, Madawaska,

Maine, U.S.A. is used as the reference material for the calibration of

U–Pb uraninite analysis by SHRIMP. Faraday uraninite is deposited

along the boundary between a belt of metagabbro and amphibolite

and the Faraday granite at Bancroft, Ontario, Canada. The meta-

gabbro and amphibolite were emplaced into the supracrustal rocks of

the Grenville Supergroup in the middle Proterozoic period. The ore

bodies, mainly consisting of uraninite and uranothorite, are a part of a

system of pegmatitic pyroxene granite dykes found at intervals of

over 2000 m with a width of about 100 m (Leng, Griffith, & Steacy,

1962). The boundaries between the granite dykes and the host rocks

are usually sharp, and the ores are usually confined within the dykes.

The crystallization age of Faraday uraninite is 1 045 Ma ±30 Ma

(Pb isotopic dating; Robinson, 1960). Faraday uraninite has a charac-

teristically higher Th/U ratio (0.11) as compared to other uraninites

found in Ontario and Quebec (Robinson & Sabina, 1955). The sample

used in this study is a fragment of a massive uraninite grain.

2.2 | Chardon and Ecarpière uraninites

Chardon and Ecarpière uraninite deposits developed along the north-

ern contact of Mortagne leucogranite in the southeast of the

Armoricain Massif, France, where peraluminous magmatism occurred

at approximately 340 to 300 Ma (Bernard-Griffiths, Peucat,

Sheppard, & Vidal, 1985; Vidal, 1973, 1980). The intrusion age of

Mortagne granite has been estimated to be 310 Ma ±10 Ma (Sonet,

1967) and 313 Ma ±5 Ma (Guineberteau, 1986) by the Rb–Sr method.

Uranium mineralization in this region occurred in extensional hydraulic

fractures (opening and brecciation by pressurized fluid), and is related

to the tectonic deformation along the South Armorican Shear Zone

that took place during the Hercynian orogeny (Cathelineau, 1981;

Cathelineau et al., 1990; Cathelineau & Leroy, 1981; Lillié, 1974).

Detailed paragenetic sequences in the Chardon and Ecarpière mines

were reported in mineralogical studies (e.g., Cathelineau, 1981; Cath-

elineau & Leroy, 1981; Poty et al., 1986) and consist of (i) quartz;

(ii) pitchblende + pyrite; (iii) quartz + hematite; and (iv) the axial filling

of veins which mainly consists of silica and dolomite. Previous study

suggests multistage U mineralization in the Chardon and Ecarpière

mines (Cathelineau et al., 1990). Major mineralization in the Ecarpière

mine has been determined to have occurred at 286 Ma ±7 Ma by

using U–Pb dating of pitchblende by CAMECA IMS 3f microprobe

(Cathelineau et al., 1990). The U–Pb analyses of Chardon uraninite by

TIMS and SIMS have yielded the upper and lower intercept ages to be

264 ±9 and 110 Ma, respectively (Cathelineau et al., 1990). In previ-

ous studies, it has been concluded that the U mineralization in the

Chardon and Ecarpière mines occurred 30 Ma– 60 Ma after the intru-

sion of Mortagne granite.

2.3 | Mistamisk uraninite-albite veins

The Mistamisk Valley is located in the central part of the Labrador

Trough, which is a Proterozoic basin in Quebec, Canada. The Labrador

Trough is bordered by the Archean gneisses of the Superior Province

to the west, by the high-grade metamorphic rocks of the Grenville

Province to the south, and by the Proterozoic and Archean gneisses

belt to the east. The western part of the trough is mainly composed of

clastic and chemical sediments deposited on the Archean gneisses,

whereas the eastern part mainly consists of basaltic and gabbroic

rocks. The Mistamisk Valley transects basalt and gabbro bodies, and is

covered by the fine-grained clastic and chemical sediments (Dimroth,

1978). The volcanic rocks were thrust over the sedimentary rocks dur-

ing the Hudsonian orogeny (Dimroth, 1978). The uraniferous veins in

the Mistamisk Valley are located in the metasediments of the western

part of the trough, and mainly consist of albite, uraninite, dolomite,

and chlorite. Uraninite is generally concentrated in the axial part of

the veins, and is fractured and recemented by albite and carbonate.

The U–Pb data for the uraninite obtained by a conventional U–Pb iso-

topic method indicate that uraninite crystallized at ca. 1 800 Ma,

which is consistent with the Hudsonian orogeny, and the

remobilization of uranium as pitchblende occurred at ca. 400 Ma

(Kish & Cuney, 1981). From the SIMS analysis of uraninite, Holliger

(1988) has reported that the crystallization age of uraninite is

1 724 Ma ±7 Ma.

3 | ANALYTICAL PROCEDURES

3.1 | EPMA analysis

Faraday uraninite was mounted with the Chardon, Ecarpière, and Mis-

tamisk uraninites using epoxy resin, and polished using 1 μm diamond

paste. Mineralogical observation was carried out by using scanning

electron microscope (SEM; JEOL JSM-5400) with energy dispersive

spectrometer (EDS; Link QX2000) at the National Museum of Nature

HORIE AND HIDAKA 3 of 16



and Science (NMNS), Japan, and by micro-Raman spectroscopy

(Renishaw inVia Raman Reflex microscope) at Hiroshima University.

The detailed analytical procedures of Raman spectroscopy can be

found in Horie, Hidaka, and Gauthier-Lafaye (2006).

EPMA (JEOL JXA-8800) at NMNS were used for the quantitative

analysis of major elements and for capturing the backscattered elec-

tron (BSE) images of the uraninite samples. Prior to the quantitative

analysis, the qualitative analysis was carried out by using SEM-EDS to

select elements to be analyzed. In this study, the quantitative analysis

followed the techniques proposed by Montel, Foret, Veschambre,

Nicollet, and Provost (1996), Santosh, Yokoyama, Biju-Sekhar, and

Rogers (2003), and Suzuki and Adachi (1991, 1994). The analysis was

carried out to determine U, Th, Pb, Si, Ca, and rare earth elements.

The Si and Ca were included in the EPMA analysis as high concentra-

tions of those elements were detected with SEM-EDS analysis of

alteration phases in the uraninite (Kempe, 2003).

The typical analytical conditions of the EPMA analysis were a spot

size of 5 μm and electron beam current of 500 nA at acceleration volt-

age of 15 kV. The counting times (peak + background) for Pb, U, Th,

and all other elements were 130, 70, 80, and 20 s, respectively. The

reference materials for U, Th, and Pb were synthesized UO2, ThO2,

and natural crocoite (PbCrO4), respectively. For the other elements,

the reference materials were the end-member synthetic phosphates

(XPO4) for the rare earth elements and Y, wollastonite for Ca and Si,

albite for Na, and fluorite for F. The X-ray lines used were UMα,

ThMα, PbMα, CeLα, NdLβ, SmLα, GdLβ, DyLα, ErLα, YbLα, YLα, CaKα,

SiKα, NaKα, and FKα. PRZ corrections (modified ZAF) were applied to

the analyses. The spectral interference of YLγ on PbMα and of ThMβ

on UMα was corrected. Problems generally arise in accurate determi-

nation in the EPMA analyses for F and Na because of the several fac-

tors, such as anisotropic diffusion (e.g., Stormer, Pierson, & Tacker,

1993). However, this effect has not been observed by Peng, Luhr, and

McGee (1997), and we assume that the diffusion does not signifi-

cantly affect our results.

3.2 | Inductively coupled plasma–mass spectrometry
(ICP–MS) analysis

Faraday uraninite was crushed and six fragments approximately

10 mg each were dissolved in 2 M HNO3. Six solutions were obtained

and were individually diluted to 15 mL with 0.5 M HNO3, and the U

and Pb contents in the solutions were then measured by ICP–MS

(Micromass PQ III) at Hiroshima University in order to confirm the

homogeneity of the Pb/U contents between the fragments. The

details of analytical procedures are in Takahashi et al. (2002).

3.3 | SHRIMP analysis

Prior to SHRIMP analysis, analytical spots are selected by BSE obser-

vation and quantitative analysis using EPMA in order to find pure ura-

ninite phases without any altered domains. The U–Pb isotopic

analyses were performed using the SHRIMP-II instrument at Hiro-

shima University. An O2
− primary ion beam of around 0.5 nA was

used to sputter an analytical spot of about 5 μm in diameter on

polished uraninite grains. The analytical condition for the U–Pb dating

of uraninite using SHRIMP was similar to that of the U–Pb zircon ana-

lyses carried out by Compston et al. (1984), Stern (1998), and Williams

(1998), though 235U+ and 251(235U16O)+ instead of 238U and
254(238U16O)+ were measured as the high U concentration in the sam-

ples. A mass resolution of 6 000 (M/ΔM at 1 % of peak height) was

used to determine the 204Pb+, 206Pb+, 207Pb+, 208Pb+, 235U+,
248(ThO)+, and 251(UO)+ peaks in the U–Pb analysis. Fayek, Kyser, and

Riciputi (2002) pointed out the interference of the hydrides of 206Pb

and 207Pb on 207Pb and 208Pb, respectively. The sample resin was

maintained under high vacuum (< 3.0 × 10−8 Torr) in a sample cham-

ber, and 209(208PbH)+ was monitored to assess the isobaric interfer-

ence on the Pb isotopic composition.

In this study, the instrumental mass fractionation (IMF) of the Pb

isotopes in the uraninite was not corrected as the IMF was negligibly

small (Evins et al., 2001; Fayek, Kyser, & Riciputi, 2002; Holliger &

Cathelineau, 1988; Meddaugh, 1983). The small IMF of Pb isotope

was also estimated by that of U in uraninite (4.4 ‰/amu; Horie

et al., 2004).

Analytical data were processed using the PRAWN-LEAD program

of SHRIMP system. A correction for common Pb was made on the

basis of the measured 204Pb and the model for common Pb composi-

tions proposed by Cumming and Richards (1975). The pooled ages

presented in this paper were calculated by Isoplot/Ex (Ludwig, 2003).

4 | RESULTS AND DISCUSSION

4.1 | Faraday uraninite as reference material

4.1.1 | Chemical composition and homogeneity of
samples

The BSE image of the entire fragment of Faraday uraninite shown in

Figure 1 reveals that the sample appears homogeneous and does not

F IGURE 1 Backscattered electron (BSE) image of Faraday
uraninite. White circles indicate SHRIMP spots. Dark pits and linear
scratches are resulted by surface roughness

4 of 16 HORIE AND HIDAKA



contain inclusions. Table 1 presents the chemical compositions of the

major elements in Faraday uraninite. Low analytical totals ranging

between 90.96 and 96.69 wt% may be caused by the presence of

elements not included in the analysis such as H2O. As shown in

Figure 2, a correlation between the UO2 contents and the analytical

totals suggests that the difference is also caused by the presence of

TABLE 1 Chemical composition of major elements in Faraday uraninite

1 2 3 4 5 6 7 8 9 10

UO2 63.29 61.08 62.73 60.28 61.47 62.12 61.10 60.64 61.95 59.36

ThO2 18.71 18.84 17.47 19.10 18.13 17.92 19.09 18.84 17.00 18.83

PbO 11.17 10.83 10.99 10.74 10.93 11.06 10.83 10.78 10.93 10.04

CaO 0.19 0.18 0.30 0.18 0.13 0.18 0.22 0.18 0.17 0.44

SiO2 n.d. n.d. 0.03 0.01 n.d. n.d. 0.01 n.d. 0.02 0.18

Ce2O3 0.50 0.54 0.52 0.57 0.49 0.46 0.64 0.73 0.68 0.64

Nd2O3 0.43 0.51 0.45 0.47 0.50 0.46 0.53 0.50 0.47 0.47

Sm2O3 0.09 0.13 0.07 0.12 0.08 0.07 0.06 0.08 0.10 0.11

Yb2O3 0.10 0.13 0.08 0.12 0.09 0.11 0.08 0.09 0.08 0.06

Er2O3 0.14 0.18 0.12 0.20 0.22 0.16 0.20 0.19 0.18 0.14

Dy2O3 0.19 0.16 0.16 0.12 0.18 0.20 0.17 0.17 0.17 0.10

Gd2O3 0.08 0.06 0.07 0.12 0.10 0.09 0.10 0.08 0.10 0.06

Y2O3 0.51 0.67 0.45 0.54 0.64 0.48 0.64 0.50 0.59 0.54

Total 95.40 93.31 93.43 92.57 92.95 93.31 93.67 92.77 92.43 90.96

(Atomic wt%)

U 55.79 53.84 55.30 53.14 54.18 54.76 53.86 53.45 54.61 52.32

Th 16.44 16.56 15.35 16.79 15.93 15.75 16.78 16.56 14.94 16.55

Pb 10.37 10.05 10.20 9.97 10.14 10.26 10.05 10.00 10.14 9.32

Pb/U 0.1858 0.1867 0.1845 0.1876 0.1872 0.1874 0.1866 0.1872 0.1858 0.1781

Th/U 0.2947 0.3075 0.2776 0.3159 0.2940 0.2876 0.3115 0.3098 0.2736 0.3163

11 12 13 14 15 16 17 18 19 20

UO2 61.17 64.73 63.73 61.06 61.53 62.91 60.89 64.16 62.33 63.58

ThO2 18.53 17.67 17.28 18.93 17.86 17.71 19.80 17.81 18.15 17.01

PbO 10.84 11.48 11.30 10.79 10.86 11.14 10.85 11.34 11.08 11.20

CaO 0.14 0.20 0.20 0.09 0.18 0.09 0.13 0.15 0.22 0.18

SiO2 0.02 n.d. 0.02 0.03 0.01 n.d. n.d. n.d. 0.01 0.01

Ce2O3 0.51 0.63 0.52 0.58 0.71 0.73 0.61 0.60 0.64 0.65

Nd2O3 0.46 0.52 0.45 0.52 0.70 0.71 0.59 0.55 0.61 0.63

Sm2O3 0.10 0.11 0.09 0.18 0.18 0.23 0.13 0.20 0.21 0.20

Yb2O3 0.09 0.09 0.07 0.09 0.11 0.13 0.11 0.10 0.10 0.10

Er2O3 0.16 0.17 0.15 0.19 0.22 0.24 0.24 0.19 0.25 0.22

Dy2O3 0.27 0.26 0.34 0.40 0.40 0.42 0.44 0.33 0.43 0.43

Gd2O3 0.22 0.30 0.39 0.41 0.40 0.40 0.45 0.32 0.42 0.41

Y2O3 0.54 0.54 0.57 0.62 0.66 0.62 0.54 0.62 0.56 0.56

Total 93.04 96.69 95.11 93.90 93.82 95.33 94.76 96.35 95.01 95.18

(Atomic wt%)

U 53.92 57.06 56.18 53.82 54.24 55.46 53.67 56.56 54.94 56.05

Th 16.28 15.53 15.19 16.64 15.70 15.56 17.40 15.65 15.95 14.95

Pb 10.06 10.66 10.49 10.01 10.08 10.34 10.07 10.53 10.29 10.39

Pb/U 0.1866 0.1868 0.1867 0.1860 0.1858 0.1864 0.1877 0.1862 0.1873 0.1854

Th/U 0.3020 0.2721 0.2703 0.3091 0.2894 0.2806 0.3242 0.2767 0.2903 0.2667

n.d., not detected.

All data in wt%.
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Zr and Hf replacing U. Faraday uraninite is characterized by low con-

tents of impure elements such as Si (< 0.18 wt%) and Ca (< 0.44 wt%)

and slightly high REE contents. The Pb/U ratios in Faraday uraninite

are homogeneous and constant at 0.1865 ±0.0008 (SD), except at

spot 10. The U and Pb contents and analytical total at spot 10 are

slightly lower than those at other spots (Table 1 and Figure 2). The Si

content at spot 10 (SiO2: 0.18 wt%) is higher than that at other spots

(SiO2 < 0.03 wt%), which indicates that some parts of Faraday urani-

nite have been altered (e.g., Finch & Ewing, 1992; Foord, Korzeb,

Lichte, & Fitzpatrick, 1997; Kempe, 2003; Pearcy, Prikryl, Murphy, &

Leslie, 1994). The partial alteration has resulted in Pb loss and U redis-

tribution in Faraday uraninite. The analytical results of six fragments

of the Faraday uraninite with ICP–MS also confirm the homogeneity

of the Pb/U elemental ratio in the uraninite within a variation of 6%

(2S.D., Table 2).

The Pb/U ratio of 0.1865 obtained from the EPMA analysis is

lower than that reported previously (0.214; Robinson & Sabina, 1955).

There are two possible reasons of the lower Pb/U ratio:

(i) substitution of U with Th in the Faraday uraninite and (ii) younger

crystallization age of the Faraday uraninite. The latter is discussed in

next section. From Table 1, it is clear that Faraday uraninite used in

this study contains a larger amount of Th (Th > 14.9 wt% and

Th/U > 0.27) as compared to the sample analyzed by Robinson and

Sabina (1955) (Th = 6.8 wt% and Th/U = 0.11). The longer half-life of

Th (1.4 × 1010 year) as compared to the half-lives of U isotopes (235U

and 238U: 7.4 × 108 and 4.47 × 109 year, respectively) slows the Pb

growth in the Th rich uraninite sample, resulting low concentration of

Pb and low Pb/U ratio.

4.1.2 | Pb isotopic compositions

The Pb isotopic compositions in Faraday uraninite determined from

21 spots by SHRIMP analysis are also homogeneous and constant

within a variation of 0.2% in the 207Pb/206Pb and 208Pb/206Pb ratios

(Table 3). The counts of the Pb hydrides 209(PbH)+ are almost equal to

the background level, thus the interference from the Pb hydrides has

not been corrected in this study. As shown in Table 3, the isotopic

abundance of 204Pb in Faraday uraninite is negligibly low

(204Pb/206Pb < 0.000006), which indicates that Faraday uraninite con-

tains little initial Pb.

4.1.3 | 206Pb/238U ratio

The average 206Pb/238U ratio in Faraday uraninite from six separate

measurements via ICP–MS has been found to be 0.163,

corresponding to 974 Ma (Table 2). However, the bulk measurement

of the 206Pb/238U ratio with ICP–MS and TIMS cannot avoid the low-

Pb/U domains such as spot 10, listed in Table 1. On the other hand,

the combination of the analytical data of the Pb/U elemental ratios

obtained by the EPMA analysis and the Pb isotopic ratios obtained by

SHRIMP analysis provides the average 206Pb/238U ratio of 0.1647,

which has been calculated using the following equation that is a modi-

fication of the equation obtained by Fayek et al. (2000).

206Pb=238U= f Pb½ � 206Pb= 204Pb + 206Pb + 207Pb + 208Pb
� �� �

= U½ � 238U= 235U+ 238U
� �� �� �

where [Pb] and [U] are the measured concentrations of Pb and U,

respectively.

The calculated 206Pb/238U ratio of 0.1647 is slightly higher than

that obtained in the ICP–MS analysis (0.163), and provides age of

983 Ma. The age is consistent with the SHRIMP Pb–Pb age of

987 Ma calculated from the average 207Pb/206Pb ratio without apply-

ing the common Pb correction. Difference between the calculated
206Pb/238U age and the Pb–Pb age expressed as % discordance

(defined as {1-(206Pb/238U age)/(207Pb/206Pb age)}× 100 (%))

(e.g., Song, Nutman, Dunyi, & Jiashan, 1996)) is 0.47, whereas that

between the ICP–MS results and the Pb–Pb age is 1.38. The higher

discordance of the ICP–MS results is attributed to inclusion of the

altered domain with low Pb/U ratio.

F IGURE 2 Correlation diagram of UO2 contents and analytical
totals obtained by EPMA analysis in Faraday uraninite

TABLE 2 ICP–MS results for Faraday uraninite

206Pb/238U

1 0.1599

2 0.1610

3 0.1580

4 0.1699

5 0.1673

6 0.1622

Average 0.163

2 S.D. 0.009
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The 206Pb/238U age of 983 Ma is lower than the previous

reported age of Faraday uraninite, which is 1 045 Ma ±30 Ma,

determined by Pb isotopic dating (Robinson, 1960). The granitic

pegmatites of the Grenville Province intruded between 1 088 and

992 Ma (Easton, 1986a, 1986b; Mezger, Essene, van der Pluijm, &

Halliday, 1993). The uranium mineralization occurred in association

with the intrusion of the pegmatitic pyroxene granite dykes at

1020 Ma (Rimsaite, 1982), which indicates that the crystallization

age of Faraday uraninite is younger than that of the pegmatitic

pyroxene granite dykes, i.e., 1 020 Ma. Though it is necessary to

have precise crystallization age of the granite with SHRIMP or

LA–ICP–MS on zircons. The uranium enrichment in the Faraday

mine occurred in two stages: (i) primary magmatic concentration

and (ii) post-magmatic alteration involving deformation, hydrother-

mal activity, and metasomatic reactions with the host rocks

(Masson & Gordon, 1981). The secondary enrichment of uranium

in pegmatite occurred due to the chemical interaction with the

host rocks (Lentz, 1996). Considering previous chronological and

mineralogical studies, the 206Pb/238U ratio of 0.1647 obtained by

the EPMA and SHRIMP analyses is reasonable and probably

reflects secondary enrichment. Therefore, in this study, the
206Pb/238U ratio of 0.1647 is used for the calibration of the

SHRIMP 206Pb/238U data of uraninite.

4.1.4 | Calibration of Pb+/U+ to Pb/U

In order to calibrate measured Pb+/U+ to Pb/U, the correlation

between 251UO+/235U+ and 206Pb+/235U+ in Faraday uraninite was

carefully examined. Measurements have been carried out at 70 differ-

ent analytical spots in 12 grains over a period of 3 days. Fayek, Kyser,

and Riciputi (2002) have reported the inter-element fractionation

between U and Pb as a function of the primary ion beam current and

the dead-time correction of an electron multiplier. Black and Jag-

odzinski (2003) have also pointed out the correlation between the

varying primary beam intensity and the dispersion from the Pb/U cali-

bration during zircon measurement. In order to prevent the variation

in the fractionation between U and Pb, the variation in the primary

beam intensity was minimized. Figure 3 shows the relationship

between the 206Pb+/235U+ ratio and the 251(UO)+/235U+ ratio in Fara-

day uraninite. Detailed data can be found in Table S1. Although a drift

was observed in the correlation of these two ratios on a daily basis,

the following empirical formula was obeyed:

ln 206Pb+ =235U+
� �

= ax ln 251 UOð Þ+ =235U+
� �

+b

where a and b are the slope (exponent) and the intercept on the

y-axis, respectively, and have been found to be constant from the

TABLE 3 Pb isotopic compositions in
Faraday uraninite measured by using
SHRIMP

204Pb/206Pb 207Pb/206Pb 208Pb/206Pb

1 0.0000017 ± 0.0000008 0.073 2 ± 0.0004 0.065 6 ± 0.0002

2 0.0000058 ± 0.0000015 0.073 3 ± 0.0006 0.069 2 ± 0.0008

3 0.0000013 ± 0.0000011 0.070 5 ± 0.0003 0.070 7 ± 0.0003

4 0.0000008 ± 0.0000008 0.071 1 ± 0.0002 0.067 3 ± 0.0002

5 0.0000019 ± 0.0000007 0.071 4 ± 0.0003 0.067 1 ± 0.0003

6 0.0000017 ± 0.0000007 0.071 5 ± 0.0002 0.070 0 ± 0.0003

7 0.0000006 ± 0.0000003 0.072 3 ± 0.0003 0.069 0 ± 0.0003

8 0.0000011 ± 0.0000010 0.073 0 ± 0.0002 0.068 3 ± 0.0003

9 0.0000015 ± 0.0000013 0.073 9 ± 0.0004 0.066 1 ± 0.0003

10 0.0000006 ± 0.0000004 0.072 7 ± 0.0003 0.067 7 ± 0.0003

11 0.0000020 ± 0.0000007 0.073 7 ± 0.0002 0.070 3 ± 0.0002

12 0.0000006 ± 0.0000007 0.071 3 ± 0.0004 0.066 9 ± 0.0004

13 0.0000003 ± 0.0000006 0.071 2 ± 0.0004 0.069 2 ± 0.0004

14 0.0000012 ± 0.0000009 0.072 3 ± 0.0014 0.069 3 ± 0.0009

15 0.0000010 ± 0.0000008 0.071 7 ± 0.0003 0.068 5 ± 0.0004

16 0.0000030 ± 0.0000015 0.072 6 ± 0.0005 0.067 5 ± 0.0007

17 0.0000037 ± 0.0000014 0.070 3 ± 0.0004 0.068 2 ± 0.0011

18 0.0000004 ± 0.0000006 0.071 6 ± 0.0004 0.069 5 ± 0.0005

19 n.d. 0.073 1 ± 0.0006 0.065 8 ± 0.0002

20 0.0000037 ± 0.0000013 0.071 4 ± 0.0003 0.068 3 ± 0.0003

21 0.0000026 ± 0.0000009 0.071 1 ± 0.0004 0.068 7 ± 0.0003

Average 0.0000017 ± 0.00000014 0.072 1 ± 0.00010 0.068 3 ± 0.00014

n.d., 204Pb not detected.

All analytical uncertainties are 1σ of the mean value.
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analyses of the reference sample. As shown in Figure 3, the slopes of

each day are shifted each other during 3 days (2.809, 2.806, and

2.802, respectively), whereas the intercepts on the y-axis show a small

variation (−6.415, −6.485 and −6.450, respectively). The variation

suggests that the fractionation between U and Pb occurs in associa-

tion with the daily differences in the primary beam condition (Fayek,

Kyser, & Riciputi, 2002). The slope estimated from the all data for the

three-day measurement is 2.968 and is steeper than the average slope

for each day, i.e., 2.805, which indicates that the slope estimated from

all data includes the variation in the y-axis, namely, the fractionation

between U and Pb. Therefore, the average slope of 2.805 ±0.123 is

used for the calibration of the SHRIMP data. The calibration uncer-

tainty (4.4%), defined as the uncertainty in the slope, is higher than

that in the common zircon analyses (less than 2%, e.g., Claoué-Long

et al., 1995).

Figure 3 suggests that the calibration method that is similar to

that used in the zircon analysis is useful for the U–Pb analysis of

uraninite. However, Fayek, Kyser, and Riciputi (2002) have

reported a weak correlation between 206Pb+/238U+ and
254(UO)+/238U+ due to the presence of impurity elements in the

uraninite matrix because the differences in the contents of other

elements (i.e., Si, Ca) may affect the ionization efficiencies of Pb+

and U+. The correlation coefficients between 206Pb+/235U+ and
251(UO)+/235U+ in Faraday uraninite are calculated to be r = 0.989,

0.968, and 0.982 for each day, respectively, which indicates that

the correlation curve can be efficiently used for the calibration of

Pb+/U+ to Pb/U. The 206Pb/238U ratios in uraninites are calculated

using the following equation:

206Pb=238U
� �

unk

= 206Pb+ =235U+
� �

unk
= 206Pb+ =235U+
� �

ref
x 206Pb=238U
� �

ref

where (206Pb+/235U+) and (206Pb/238U) are the measured secondary

ion ratio and the isotopic ratio, respectively. The subscripts “unk” and

“ref” denote the unknown sample and the reference uraninite sample,

respectively. The 206Pb+/235U+ ratio in the unknown sample can be

estimated from the calibration equation.

4.1.5 | Comparison of Pb/U ratios obtained by
EPMA and SHRIMP analyses

The Pb/U calibration method was applied to three uraninite samples

obtained from Chardon, Ecarpière, and Mistamisk. Previous studies

have pointed out the analytical difficulties in the U–Pb analysis of ura-

ninite because the ionization efficiencies of U+ and Pb+ in uraninite

strongly depend on the matrix compositions of the uraninite sample

(Fayek et al., 2000; Fayek & Kyser, 1997). Prior to the SHRIMP analy-

sis, analytical spots were selected by BSE imaging and EPMA analysis.

Table 4 lists the U, Th, and Pb contents in the three uraninites.

Tables 1 and 4 show that there are differences in the chemical com-

positions between the Faraday uraninite and the three uraninite sam-

ples. The U contents in Chardon, Ecarpière, and Mistamisk uraninites

(more than 70.18, 66.8, and 64.03 wt%, respectively) are higher than

the U content in Faraday uraninite (53.14–57.06 wt%). Faraday urani-

nite contains a large amount of Th (Th > 14.94 wt%), whereas Cha-

rdon and Ecarpière uraninites contain a negligible amount of Th

(ThO2 < 0.02 wt%), and Mistamisk uraninite contains a small amount

of Th (ThO2 < 0.63 wt%). Moreover, the Si and Ca contents in Cha-

rdon, Ecarpière, and Mistamisk uraninites (SiO2 > 0.34, 0.35, and

0.03 wt%; CaO > 7.02, 8.09, and 0.68 wt%, respectively, excluding

spot 1 in Mistamisk uraninite) are higher than those in Faraday urani-

nite (SiO2 < 0.03 wt% and CaO < 0.3 wt%). The U–Pb data for Cha-

rdon, Ecarpière, and Mistamisk uraninites obtained from the SHRIMP

analysis were carefully compared with the EPMA results to discuss

the matrix effects on the U and Pb ionization efficiencies in the

uraninites.

Figure 4 shows the comparison between the Pb/U ratio of the

EPMA and SHRIMP analyses for Chardon, Ecarpière, and Mistamisk

uraninites. Considering the time-dependent drift of the U–Pb calibra-

tion curve, shown in Figure 4, the primary beam intensity was

maintained to be constant, and analyses of Faraday reference urani-

nite were performed after every two analysis of the uraninite samples.

The SHRIMP 206Pb*/238U data for the uraninites show a good correla-

tion with the EPMA data. The correlation coefficients between the

SHRIMP and EPMA data have been calculated to be r = 0.98, 0.99,

and 0.97 for Chardon, Ecarpière, and Mistamisk uraninites, respec-

tively. These values indicate that the calibration method using Faraday

uraninite as a standard can provide efficient estimation of the
206Pb/238U ratios in Chardon, Ecarpière, and Mistamisk uraninites.

F IGURE 3 Correlation diagram of 206Pb+/235U+ and
251(UO)+/235U+ ratios in Faraday uraninite. a and b are the slope
(exponent) and the intercept on the y-axis of the calibration curve,
respectively
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TABLE 4 Chemical composition of major elements and SHRIMP U–Pb data in uraninite samples

(a) Chardon uraninite

1 2 3 4 5 6 7 8 9

EPMA

UO2 79.85 79.62 79.86 80.22 80.31 79.72 79.96 80.02 79.88

ThO2 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

PbO 4.05 3.40 4.10 3.76 4.08 4.03 4.08 3.66 3.54

CaO 7.36 7.35 7.30 7.09 7.28 7.11 7.31 7.02 7.13

SiO2 1.14 0.82 1.02 0.94 0.34 0.62 0.82 1.03 0.99

Ce2O3 n.d. 0.13 n.d. 0.04 0.64 0.57 0.63 0.69 0.11

Y2O3 0.03 0.01 0.05 n.d. 1.35 1.32 1.41 1.29 0.04

Na2O 0.67 0.56 0.60 0.59 0.02 0.10 0.02 0.06 0.54

F 1.39 1.38 1.40 1.34 0.04 0.01 0.06 0.02 0.44

Total 94.49 93.28 94.32 93.98 94.06 93.49 94.28 93.79 92.67

SHRIMP

U 70.39 70.18 70.40 70.71 70.79 70.27 70.48 70.54 70.41

Pb 3.76 3.16 3.81 3.49 3.79 3.74 3.79 3.40 3.29

Pb/U 0.0534 0.0450 0.0541 0.0494 0.0535 0.0532 0.0537 0.0482 0.0467

206Pb*/238U 0.0501 0.0412 0.0513 0.0481 0.0501 0.0500 0.0504 0.0443 0.0435

1σ 0.0020 0.0064 0.0014 0.0033 0.0016 0.0019 0.0023 0.0022 0.0047

(b) Ecarpière uraninite

1 2 3 4 5 6 7 8 9

EPMA

UO2 78.91 78.81 79.59 79.23 79.35 79.66 79.78 77.78 75.78

ThO2 n.d. n.d. 0.02 n.d. n.d. n.d. n.d. n.d. n.d.

PbO 3.34 3.33 3.44 3.34 3.59 3.43 3.46 2.86 2.41

CaO 8.33 8.10 8.18 8.39 8.94 8.09 9.51 9.95 8.79

SiO2 0.35 0.87 0.38 0.39 0.55 0.94 0.45 3.55 5.45

Ce2O3 0.07 0.23 0.20 0.19 0.16 0.14 0.20 0.10 0.13

Y2O3 0.10 0.17 0.15 0.14 0.11 0.11 0.06 0.05 0.04

Na2O 0.64 0.62 0.66 0.66 0.39 0.56 0.65 0.25 0.35

F 2.24 2.07 2.14 2.46 1.80 1.78 2.51 0.32 0.51

Total 93.98 94.20 94.76 94.80 94.87 94.71 96.62 94.86 93.46

SHRIMP

U 69.56 69.47 70.16 69.84 69.95 70.22 70.33 68.56 66.80

Pb 3.10 3.09 3.19 3.10 3.33 3.18 3.21 2.65 2.24

Pb/U 0.0446 0.0445 0.0455 0.0444 0.0476 0.0453 0.0457 0.0387 0.0335

206Pb*/238U 0.0448 0.0449 0.0453 0.0448 0.0474 0.0458 0.0459 0.0386 0.0354

1σ 0.0034 0.0017 0.0028 0.0027 0.0034 0.0029 0.0029 0.0046 0.0029

(c) Mistamisk uraninite

1 2 3 4 5 6 7 8

EPMA

UO2 72.79 75.62 75.88 72.64 76.76 74.28 72.98 75.28

ThO2 0.63 n.d. n.d. n.d. 0.05 0.12 0.01 n.d.

PbO 18.27 16.15 15.19 14.23 11.28 20.34 17.53 17.22

CaO 0.17 2.12 2.41 1.53 2.67 0.68 2.51 1.34

(Continues)
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4.2 | U–Pb dating of uraninite samples

4.2.1 | Internal textures and chemical composition of
uraninites

Kempe (2003) has suggested that the internal textures and the varia-

tion in the Si and Ca contents are useful criteria for studying the alter-

ation phases in uraninite. The BSE images of the uraninite samples are

shown in Figure 5. Chardon uraninite, which is Ca-rich uraninite

(CaO > 7.02 wt%), contains a large number of micro inclusions such as

marcasite (FeS2), goethite (FeOOH), and Pb oxide (Figure 5a) which

have been identified from SEM-EDS and micro-Raman spectroscopy.

Ecapière uraninites are associated with Fe-sulfides (Cathelineau,

1981), but the EDS analysis could not detect the presence of Fe and S

in them. The Pb/U ratios obtained from the EPMA analyses are

scattered in the range of 0.0 450 to 0.0 541, which suggests that

U–Pb systems in some parts of Chardon uraninite have been dis-

turbed. Kempe (2003) has reported a correlation between the Pb/U

ratios and the Si and Ca contents in uraninite altered by fluids. Cha-

rdon uraninite does not show such a correlation, which suggests that

Chardon uraninite originally contains Ca and Si. The variation in the

Pb/U ratios in Chardon uraninite is probably due to the partial Pb loss

such as thermal diffusion, which is supported by larger deviation of Pb

contents (standard deviation: 0.25) than those of U (0.19).

Ecarpière uraninite, which is also Ca-rich uraninite (CaO > 8.09 wt

%), shows homogeneous chemical composition except 5–10 μm

around fractures characterized by darker brightness of BSE response

(Figure 5b). Table 4 shows that the Pb/U ratios are constant (0.0 454

±0.0 011), except Nos. 8 and 9 which are dark domains around

fractures (0.0 387 and 0.0 335, respectively). The Si contents in the

dark domains (SiO2: 3.55 and 5.45 wt%, respectively) are higher than

those in the bright domains (SiO2 < 0.94 wt%), whereas the U con-

tents in the dark domains (U: 68.56 and 66.80 wt%, respectively) are

lower than those in the bright domains (U > 69.47 wt%), which indi-

cates that the vicinity of the fractures in Ecarpière uraninite has been

altered. Figure 6 shows a correlation between the UO2 contents and

the analytical totals. Except for the low Pb/U spots (Chardon: spots

2, 8, and 9; Ecarpière: 8 and 9), the UO2 contents show a correlation

with the analytical totals, which indicates that low analytical totals in

Chardon and Ecarpière uraninites (92.67–94.49 and 93.46–96.62 wt

%, respectively) may be caused by the presence of unanalyzed ele-

ments replacing U.

Mistamisk uraninite shows a patchy texture (Figure 5c). The pat-

chy texture of Mistamisk uraninite indicates that some parts of the

sample has been affected by alteration (Kempe, 2003). Table 4 shows

a variation in the Pb/U ratios (0.1547–0.2884) and the contents of Th

(ThO2: < 0.63 wt%), CaO (0.17–2.67 wt%) and SiO2 (0.03–0.48 wt%).

As shown in Figure 7, the correlation between the Pb/U ratios and

the Ca contents suggests that U–Pb system has been disturbed by an

alteration event (Kempe, 2003).

4.2.2 | Chronological interpretation

Figures 8 and 9 show the U–Pb isotopic data for Ecarpière, Mistamisk,

and Chardon uraninite, respectively. The analytical uncertainties in

the 238U/206Pb* ratios are higher than those in the 207Pb*/206Pb*

ratios due to the large calibration uncertainty.

TABLE 4 (Continued)

(c) Mistamisk uraninite

1 2 3 4 5 6 7 8

SiO2 0.03 0.48 0.27 0.09 0.12 0.04 0.19 0.35

Ce2O3 0.17 0.54 0.46 0.43 0.39 0.11 0.46 0.45

Nd2O3 0.04 0.44 0.48 0.45 0.42 0.04 0.49 0.32

Sm2O3 0.13 0.09 0.20 0.10 0.15 0.12 0.14 0.10

Yb2O3 0.03 0.09 0.16 0.06 0.09 0.04 0.06 0.07

Er2O3 n.d. 0.09 0.14 0.02 0.12 n.d. 0.09 0.10

Dy2O3 0.18 0.35 0.42 0.23 0.37 0.16 0.21 0.37

Gd2O3 0.10 0.10 0.33 0.36 0.30 0.09 0.31 0.21

Y2O3 0.25 0.67 0.94 0.78 0.77 0.20 0.86 0.77

Total 92.77 96.74 96.88 90.91 93.47 96.22 96.58 96.58

SHRIMP

U 64.16 66.66 66.89 64.03 67.66 65.48 64.33 66.36

Pb 16.96 14.99 14.10 13.21 10.47 18.88 16.27 15.99

Pb/U 0.2643 0.2249 0.2109 0.2062 0.1547 0.2884 0.2530 0.2409

206Pb*/238U 0.268 0.222 0.209 0.183 0.163 0.291 0.258 0.247

1σ 0.017 0.042 0.037 0.005 0.021 0.040 0.046 0.016

n.d., not detected.

All EPMA data in wt%.
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4.2.3 | Ecarpière uraninite

Cathelineau et al. (1990) have reported that Ecarpière uraninite has

remarkably homogeneous U and Pb contents over large areas

(> 200 μm). We have also confirmed from the BSE images and the

chemical composition data that Ecarpière uraninite shows homoge-

neous Pb/U ratios except 5–10 μm around fractures characterized by

F IGURE 4 Comparison of the Pb/U ratios obtained from EPMA
analysis and 206Pb*/238U ratios obtained from SHRIMP analysis for
(a) Chardon, (b) Ecarpière, and (c) Mistamisk uraninites

F IGURE 5 BSE images of (a) Chardon uraninite containing a large
number of micro inclusions such as marcasite (FeS2), goethite
(FeOOH), and Pb oxide, (b) Ecarpière uraninite showing darker
brightness domain of BSE response at 5–10 μm around vicinity of
fractures, and (c) Mistamisk uraninite showing patchy texture. White
circles show SHRIMP spots including the spots which are not
associated with this work. Spot number is in common with Table 4
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darker brightness of BSE response (Figure 5b and Table 4). The U–Pb

analyses of the homogeneous Pb/U phases of Ecarpière uraninite pro-

vide concordant U–Pb data (Figure 8a). The U–Pb age of Ecarpière

uraninite is 287 Ma ±8 Ma (95% conf.) and is consistent with the pre-

vious chronological results of fibroradial pitchblende and pitchblende

with hematite (286 Ma ±7 Ma; Cathelineau et al., 1990). Therefore,

the U–Pb age found in our study, i.e., 287 Ma ±8 Ma, supports the

previous mineralization history, in which major U deposition along the

northern contact fault of Mortagne granite occurred in association

with the tectonic reactivation of the South Armorican Shear Zone dur-

ing 290 Ma–270 Ma (Cathelineau et al., 1990).

On the other hand, the U–Pb analyses of the dark domains

observed in the BSE image, such as Nos. 8 and 9 provide discordant

U–Pb data. The EPMA data of the two spots also show low Pb/U

ratios and U and Pb contents (Table 4). On the basis of the high Si

contents (Table 4), it can be assumed that the remobilization of U and

Pb has occurred in the dark domains during the alteration. The result

of U–Pb dating in this study supporting the previous mineralization

history suggests that our calibration method using Faraday uraninite

except the dark domains in the BSE images is useful for a Ca-rich

uraninite.

F IGURE 6 Correlation diagram of UO2 contents and analytical
totals obtained by EPMA in Chardon and Ecarpière uraninite plotted
with data of Faraday uraninite

F IGURE 7 Correlation diagram of Pb/U ratio and Ca content in
Mistamisk uraninite

F IGURE 8 Tera-Wasserburg concordia diagrams for (a) Ecarpière
and (b) Mistamisk uraninites. The filled circles indicate data rejected in
the age calculation. The uncertainties are 1σ of the mean values
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4.2.4 | Mistamisk uraninite-albite veins

Bonhoure, Kister, Cuney, and Deloule (2007) and Takahashi et al.

(2002) have reported that Mistamisk uraninite shows homogeneous

distributions of REE over the grains. The BSE image of Mistamisk ura-

ninite shows a patchy texture indicating heterogeneous chemical

compositions (Figure 5c). In Figure 7, the dark domain observed in the

BSE image is characterized by higher Ca contents and lower Pb/U

ratios as compared to the bright domain. The patchy texture and the

scattered Pb/U ratios (0.1 547–0.2 884) in Mistamisk uraninite sug-

gest that the U–Pb system has been disturbed by the alteration event

due to its low crystallinity caused by the radiation damages. The U–Pb

isotopic analyses of Mistamisk uraninite also show a disturbance in

the U–Pb system (Figure 8b). The calculations and regressions of dis-

cordant U–Pb data are after Davis (1982). The upper intercept age of

1 729 Ma ±40 Ma is consistent with previous chronological reports

based on TIMS (ca. 1 800 Ma; Kish & Cuney, 1981) and SIMS

(1 724 Ma ±7 Ma corresponding to the Hudsonian orogeny event;

Holliger, 1988). As shown in Table 4, the correlation between the
206Pb*/238U ratios and the Pb contents indicates Pb loss in some parts

of the uraninite. The lower intercept age of 421 Ma ±98 Ma corre-

sponds to a period of high orogenic activity in North America (e.g., the

Taconic and Acadian orogenies), which suggests that the Pb loss has

occurred during the remobilization of U in association with the ther-

mal event.

The results for Ecarpière and Mistamisk uraninites are consis-

tent with previously reported chronological results, which indicates

that the established calibration method using Faraday uraninite is

useful.

4.2.5 | Chardon uraninite

Because Chardon uraninite contains several types of micro inclusions

(Figure 5a), the U–Pb isotopic analyses of Chardon uraninite sample

were carried out after a careful selection of the analytical spots in order

to avoid such impure phases. Figure 9 shows a U–Pb concordia dia-

gram for Chardon uraninite. The 206Pb*/238U ratios (0.0412–0.043) at

three analytical spots are lower than the other 11 spots

(0.0481–0.0513). The EPMA data for the three spots also show low Pb

contents (Nos. 2, 8, and 9 in Table 4). The U–Pb age of the Chardon

uraninite, excluding the data from the spots with low Pb contents, is

calculated to be 315 Ma ±7 Ma (95% conf.). This age is consistent with

the intrusion age of the Mortagne granite of 310 Ma ±10 Ma (Sonet,

1967) and 313 Ma ±5 Ma (Guineberteau, 1986), but older than that

obtained from the previous chronological result (264 Ma ±9 Ma; Cath-

elineau et al., 1990). Previous studies have reported that the uranium

mineralization in the Chardon mine occurred in association with the

hydrothermal activity during the cooling of the Mortagne granite

(Cathelineau, 1981; Cathelineau et al., 1990; Cathelineau & Leroy,

1981; Lillié, 1974). From the mineralogical observation of the sample, it

is evident that goethite was formed from marcasite under an oxidizing

condition (Rinker, Nesbitt, & Pratt, 1997; Wiersma & Rimstidt, 1984).

Under the oxidizing condition, uranium is mobilized as UO2
2+. More-

over, all U–Pb data obtained by Cathelineau et al. (1990) by combining

the data of TIMS and SIMS analyses are discordant, which suggests

that the U–Pb system in Chardon uraninite has been partially disturbed

after mineralization. Therefore, it is reasonable that some parts of Cha-

rdon uraninite were crystallized by the igneous activity of Mortagne

granite, and then the uranium ore body was formed by the hydrother-

mal activity. After the formation of the ore body, the uraninite released

Pb under the oxidizing condition.

4.3 | Advantage of the established calibration
method

The results of U–Pb isotopic analyses of Ecarpière and Mistamisk ura-

ninites using the established calibration method, which is similar to the

calibration method used in conventional zircon analysis, are consistent

with those obtained in previous chronological studies. In addition, the

U–Pb data of Chardon uraninite provide a new insight into ore forma-

tion. These results indicate that the established calibration method

using the Faraday uraninite is useful for isotopic dating on the scale of

a few micrometers to tens of micrometers, which makes it possible to

discuss exact and detailed age of uraninite. The application of this

method enables us to eliminate the use of a combination of EPMA and

SIMS analyses, thereby reducing the efforts involved. On the other

hand, the age obtained using the RSF approach can differ from the

actual age by more than an order of magnitude depending on the ana-

lytical conditions and the instrument used (Homma, 1994; Simons

et al., 1990; Williams, 1998). As a result, different instruments cannot

be used when this method is used. Because the established calibration

method is independent of instruments as well as that of zircon, this

method can be employed by using various types of SIMS instruments.

F IGURE 9 Tera-Wasserburg concordia diagram for Chardon
uraninite. The filled circles indicate data rejected in the age
calculation. The uncertainties are 1σ of the mean values
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5 | CONCLUSIONS

A method for the U–Pb isotopic analysis of uraninite using SHRIMP

has been established. The relationship between 251(UO)+/235U+ and
206Pb+/235U+ is useful for the calibration from ion ratios to atomic

abundance ratios. The EPMA, ICP–MS, and SHRIMP analyses of Fara-

day mine uraninite show that it has the sufficiently homogeneous

Pb/U ratio and the Pb isotopic composition (average 206Pb/238U ratio

of 0.1 647) as the reference material for the U–Pb analysis by SIMS.

The established calibration method has been applied to three ura-

ninite samples collected from Chardon, Ecarpière, and Mistamisk

mines. The results of the U–Pb analyses of Ecarpière uraninite

(287 Ma ±8 Ma) and the Mistamisk uraninite-albite veins (the upper

intercept age of 1 729 Ma ±40 Ma) show good consistency with

those obtained in previous chronological studies (286 Ma ±7 Ma and

1 724 Ma ±7 Ma, respectively). The consistency of results for

Ecarpière and Mistamisk uraninites indicate that the established cali-

bration method using Faraday uraninite is useful for the analysis of

uraninite. The U–Pb age of Chardon uraninite (315 Ma ±7 Ma) is con-

sistent with the igneous activity of Mortagne granite, but is higher

than the previously reported age (264 Ma ±9 Ma). The U–Pb result

suggests that Chardon uraninite was formed by the hydrothermal

activity during the cooling of Mortagne granite, and then uraninite

released Pb under the oxidizing condition, which is a new insight into

ore formation.

The established analytical method using Faraday uraninite is useful

for isotopic dating on the scale of a few micrometers to tens of micro-

meters, which make it possible to discuss exact and detailed age of

uraninite. The method allows us to determine accurate U–Pb age of

uraninite with more simple way than that of a combination of Pb/U

elemental ratio by EPMA analysis and Pb isotope ratio by SIMS

analyses.
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