一報告一 Report

Report on the Southern Ocean Continuous Plankton Recorder (SO-CPR) Standards Workshop 2018: SCAR SO-CPR Database Expert Group

Kunio T. Takahashi^{1,2*}, John A. Kitchener³, Karen V. Robinson⁴ and Graham W. Hosie⁵

南極研究科学委員会の連続プランクトン採集器データベース グループワークショップ 2018 報告

高橋邦夫^{1,2*} · John A. Kitchener³ · Karen V. Robinson⁴ · Graham W. Hosie⁵

(Received February 22, 2019; Accepted March 5, 2019)

要旨: 2018年11月20-23日にオーストラリア南極局にて「南極研究科学委員会、連続プランクトン採集器(以下 CPR)データベース専門家グループワークショップ 2018」を開催した。本ワークショップは2年に一度を目途に、南大洋 CPR 観測プロジェクト参加国の技術者を集め、各国間で統一された試料処理およびデータ管理を維持する目的で実施しており、今回は2016年に次ぐ開催であった。プロジェクトを主導する日本、オーストラリア、ニュージーランドの実務担当者の間で、動物プランクトンの種同定リストの更新、それに伴う具体的な分類カテゴリーの同定方法の確認を行った。特に亜南極域に出現するオキアミ類やカイアシ類について情報共有した。後半は観測データの品質管理、データ分析手法の再確認、また各国のマネージメントの状況を確認するとともに、今後の活動についての詳細な討議を行った。特に新規参入国へ向けた技術者育成ワークショップのための、分析手法マニュアル、および動物プランクトン種同定マニュアルの作成へ向けたロードマップを作製し、作業を開始することになった。

キーワード: 連続プランクトン採集器、モニタリング観測. 動物プランクトン

Abstract: The "Southern Ocean Continuous Plankton Recorder (SO-CPR) Survey Standards Workshop" was held at the Australian Antarctic Division on 20–23 November 2018. This biennial workshop was last held in 2016. The participants were technicians from the three nations (Japan, Australia, and New Zealand) leading the project. The purpose of the workshop was to ensure that high standards of data quality were being

¹ 情報・システム研究機構国立極地研究所. National Institute of Polar Research, Research Organization of Information and Systems, 10–3 Midori-cho, Tachikawa, Tokyo 190-8518.

² 総合研究大学院大学複合科学研究科極域科学専攻. Department of Polar Science, School of Multidisciplinary Sciences, SOKENDAI (The Graduate University for Advanced Studies), 10-3 Midori-cho, Tachikawa, Tokyo 190-8518.

³ オーストラリア南極局. Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania 7050, Australia.

⁴ ニュージーランド国立水圏・大気圏研究所、National Institute of Water and Atmospheric Research Ltd., Private Bag 14-901, Kilbirnie, Wellington, New Zealand.

⁵ アリスター・ハーディ卿海洋科学財団. Sir Alister Hardy Foundation for Ocean Science, Citadel Hill, Plymouth PL1 2 PB UK

^{*} Corresponding author. E-mail: takahashi.kunio@nipr.ac.jp

maintained, in terms of species identification and methodology, among the main analysts of the SO-CPR survey, and to discuss future training methods and a future roadmap for the SO-CPR program. A range of topics was discussed including: taxonomic resolution issues (particularly for northern species of copepods and euphausiids), laboratory methods (setting of the CPR cassette, microplastic counting rules), training methods (SO-CPR processing manual and zooplankton counting rule book), data handling for database input, and future standards workshops, including comprehensive training workshops for emerging SO-CPR survey partners. We discussed and agreed on a future roadmap for making a SO-CPR processing manual and zooplankton counting rule book, for the purposes of current and new technician training.

Keywords: Continuous Plankton Recorder, monitoring, zooplankton

1. Background

The Continuous Plankton Recorder (CPR) is a useful monitoring tool for surface plankton species. It can continuously collect data over a distance of 450 nautical miles during a single tow as it is pulled behind a vessel with normal ship speed. CPR surveys have successfully been used to define geographical groupings of zooplankton species/taxa with similar patterns of seasonal, interannual, long-term, and spatial variation in plankton diversity.

The CPR prototype was invented and first trialled in the Southern Ocean by the marine biologist inventor Sir Alister Hardy during the *Discovery Investigations* of the 1920s. In 1991, the Southern Ocean CPR (SO-CPR) Survey commenced for the purposes of mapping spatial and temporal variations in zooplankton patterns and making use of the sensitivity of plankton to environmental change as an early indicator of the health of the Southern Ocean ecosystem (Hosie *et al.*, 2003). The Scientific Committee on Antarctic Research (SCAR) recognised the importance and value of the SO-CPR data and established an Action Group in 2006. In 2008, we started the Expert Group on CPR Research (EG-CPR) to assist with the development and expansion of CPR research in the Southern Ocean and Antarctic waters. EG-CPR transitioned in 2016 to form the SO-CPR Database Expert Group to focus more on maintaining the quality control and assurance of data entered into the SCAR SO-CPR Database, as well as continue to develop the survey itself. At the SCAR Standing Scientific Group-Life Science (SSG-LS) business meeting in Davos, Switzerland in May 2018, the continuation of the SO-CPR Database Expert Group until the next meeting (August 2020) was recognized.

The terms of reference for the SO-CPR Database Expert Group are to:

- 1. Continue to develop and maintain the SO-CPR Database and improve access for users
- 2. Ensure quality assurance and control of the data through regular training and standardisation workshops
- Encourage other nations, especially developing Antarctic nations, to participate in the workshops, and thus improve the spatial and temporal coverage of CPR tows around Antarctica

The SO-CPR dataset is an important SCAR Business Product, and it is dependent on regular taxonomy and methodology standardisation workshops to maintain and ensure quality assurance and control of the data. At the time of the 2016 workshop in Hobart, we

agreed that there should be a workshop every two years to ensure that the high standards of the SO-CPR program are maintained (Takahashi *et al.*, 2017).

2. Purpose of the workshop

The SO-CPR Standard workshop was organized to ensure the maintenance of high-quality data for zooplankton species analysis among the CPR analysts in each country. The main purpose of this meeting was to confirm that the three main analysts (from Japan, Australia, and New Zealand) are maintaining consistent high standards in relation to species identifications, methods, and data quality. A secondary aim of the workshop was to discuss future training methods, including the production of a SO-CPR processing manual, a zooplankton counting rule book, and a future roadmap for the SO-CPR program. This workshop followed on from the 2016 Hobart Standards Workshop (Takahashi *et al.*, 2017).

3. Workshop agenda and participants

Four participants from three countries attended the workshop (Table 1), including three CPR analysts (one from each country). The agenda for the workshop is shown in Table 2.

4. Workshop summary

4.1. Laboratory methods

We discussed the laboratory methodologies being used and checked some points in the laboratory (Fig. 1). We checked the processing procedure for each sample carefully based on the 2010 workshop report from Tokyo. In particular, we performed practice training for the setting of the CPR cassette in the laboratory. The processing methodologies will be further updated in a new SO-CPR processing manual.

4.2. Species list

During the previous workshop in 2016, we updated the species/taxa list of 260 categories (Takahashi et al., 2017). This time, one Amphipoda (Hemityphis sp.), one Siphonophorae (Lensia sp.), and 27 northern copepod species/taxa (Acartia (Acartiura) tranteri, Acartia (Odontacartia) pacifica, Aetideus australis, Calanoides brevicornis, Calanoides sp., Calocalanus plumulosus, Calocalanus styliremis, Centropages furcatus, Clausocalanus arcuicornis, Clausocalanus ingens, Clausocalanus pergens, Clytemnestra

Name	Position	Affiliation	Country
Kunio Takahashi	Assistant Professor, Director SO-CPR	National Institute of Polar Research	Japan
John Kitchener	CPR Senior Analyst, Co-Chair SCAR EG-CPR	Australian Antarctic Division	Australia
Karen Robinson	Plankton Analyst	National Institute of Water and Atmospheric Resarch	New Zealand
Graham Hosie	Emeritus Life Fellow, CPR Ambassador	Sir Alister Hardy Foundation for Ocean Science	Australia

Table 1. Workshop participant list.

Table 2. Agenda for the "SO-CPR Standards Workshop."

SO-CPR St	andards Workshop "SCAR SO-CPR Database Expert Group"		
	Agenda		
20 Nov.			
10:00-11:00	Background and purpose of workshop		
	-Report of the SCAR business meeting in Davos, 2018		
11:00-13:00	Up-to-date "SO-CPR taxonomic list"		
	-Checking new species/taxa		
	-Microplastic counting rule		
	-Collation of taxonomic list		
14:00-17:00	Database		
	-Data handling for database		
	-Double checking		
21 Nov.			
10:00-12:30	Database		
	-Data handling		
13:30-15:00	Checking the publication list		
15:00-17:00	Review of new identification and counting rules		
22 Nov.			
10:00-12:30	CPR processing manual		
	-Laboratory methodologies		
	-Counting rule for copepods		
14:00-17:00	CPR processing manual		
	-Counting rule for euphausiids		
	-Counting rule for other groups		
23 Nov.			
10:00-11:30	Project fund and future workshops		
	-Planning of the next workshop		
	-Training workshop for India		
	-Further larger workshop		
11:30-12:30	Sample processing situation		
14:00-16:00	Checking the laboratory methodologies		
16:00-17:00	Workshop report		

scutellate, Farramula sp., Lucicutia flavicornis, Mecynocera sp., Mesocalanus sp., Nannocalanus minor, Oculosetella gracilis, Oithona atlantica, Oithona longispina, Oncaea mediterranea, Oncaea venusta typica, Paracalanus aculeatus, Paracalanus indicus, Rhincalanus nasutus, Sapphirina nigromaculata, and Scaphocalanus echinatus) were added. The newest species list for the SO-CPR database was checked using the Taxon Match of the World Register of Marine Species (WoRMS: http://www.marinespecies.org/index.php) name validation tool (Costello et al., 2013). We updated the list to the latest version, which currently includes 289 species/taxa (Table 3).

4.3. Taxonomic resolution issues

Based on reports of past workshops (Takahashi et al., 2011, 2017), we checked a new

Fig. 1. Photographs showing verification of methods by technicians in the laboratory (left), and microplastic in the CPR samples (right).

counting rule. We also reviewed the previous reports to keep the same level of taxonomic identification of species at each technician. We checked the following points in particular.

- Copepods: The identification rules and counting points for the nauplius stages of *Eucalanus* and *Rhincalanus* species
- Euphausiids: The identification rules of northern species such as *Euphausia hanseni*, *E. lucens*, *E. similis*, and *E. spinifera*; the counting points for the larval stages including *Euphausia vallentini* and *E. frigida*
- Decapods: The identification rules for Zoea and Megalops stages
- Others: The minor identifying point of several species/taxa, such as *Vibilia* spp. (Amphipoda), Foraminifera, and Chaetognatha species

The taxonomic rules will be further updated in a new SO-CPR counting rule manual.

4.4. Microplastics on CPR samples

Marine plastic pollution has spread across the world's oceans, and recent findings have now demonstrated that microplastics have indeed reached the Southern Ocean (Isobe *et al.*, 2017; Waller *et al.*, 2017). To understand the sources and scale of this pollution, an internationally coordinated effort is needed with standardised identification techniques for microplastics. The CPR analysts from the Australian and New Zealand have been collecting a limited amount of data about microplastics alongside their primary research on CPR since 2008 (Fig. 1). In late 2016, there was a proposal for a common and appropriate counting methodology from the Global Alliance of CPR Surveys (GACS) community, which coordinated a global CPR program (Table 4).

Thus, we confirmed the counting rule for microplastics in CPR samples. We try to identify to three types of plastic: "Strand", "Bead", and "Flake". The "Strand" type is further classified into "Monofilament-type" or "Flat-fibre type". Each type is divided into seven colours (clear/transparent, black, blue, red, yellow, green, and other colours) and four size ranges ("Small" $\leq 300~\mu\text{m}$, "Medium" $> 300~\mu\text{m} \leq 2~\text{mm}$, "Large" $> 2~\text{mm} \leq 5~\text{mm}$, and "Extra Large" > 5~mm). We agreed to add the microplastics column into the latest data sheet and to count continuously.

Table 3. Zooplankton species/taxa list for the SO-CPR Survey. C: Calyptopis stage, F: Furcilia stage.

*Class; **Phylum; ***Infraclass; ****Subphylum. +: New species /taxa added at this work-shop. (1/3)

Order	Taxa	Order	Taxa
Amphipoda	Amphipoda indet	Calanoida	Calanoides acutus
Amphipoda	Brachyscelus crusculum	Calanoida	Calanoides brevicornis +
Amphipoda	Cyllopus lucasii	Calanoida	Calanoides sp. +
Amphipoda	Cyllopus magellanicus	Calanoida	Calanus australis
Amphipoda	Dairella californica	Calanoida	Calanus propinquus
Amphipoda	Hemityphis sp.+	Calanoida	Calanus simillimus
Amphipoda	Hyperia sp.	Calanoida	Calanus sp.
Amphipoda	Hyperia spinigera	Calanoida	Calocalanus plumulosus +
Amphipoda	Hyperiella antarctica	Calanoida	Calocalanus sp.
Amphipoda	Hyperiella dilatata	Calanoida	Calocalanus styliremis +
Amphipoda	Hyperiella sp.	Calanoida	Candacia bipinnata
Amphipoda	Hyperiidae indet	Calanoida	Candacia cheirura
Amphipoda	Hyperoche medusarum	Calanoida	Candacia falcifera
Amphipoda	Hyperoche sp.	Calanoida	Candacia maxima
Amphipoda	Phronima sp.	Calanoida	Candacia sp.
Amphipoda	Platysceloidea indet	Calanoida	Centropages aucklandicus
Amphipoda	Primno macropa	Calanoida	Centropages bradyi
Amphipoda	Scina sp.	Calanoida	Centropages furcatus +
Amphipoda	Themisto australis	Calanoida	Centropages sp.
Amphipoda	Themisto dastratis Themisto gaudichaudii	Calanoida	Clausocalanus arcuicornis +
Amphipoda	Themisto sp.	Calanoida	Clausocalanus brevipes
Amphipoda	Vibilia antarctica	Calanoida	Clausocalanus ingens +
Amphipoda	Vibilia armata	Calanoida	Clausocalanus laticeps
Amphipoda	Vibilia sp.	Calanoida	Clausocalanus pergens +
	Branchiopoda indet	Calanoida	Clausocalanus sp.
Branchiopoda*	Chaetognatha indet		Clytemnestra scutellata +
Chaetognatha**	Eukrohnia hamata	Harpacticoida	Clytemnestra scalenata + Clytemnestra sp.
Phragmophora	Eukronnia namaia Pseudosagitta gazellae	Harpacticoida	Copepoda indet
Aphragmophora	0 0	Hexanauplia*	Copepoda maet Copepoda nauplius indet
Aphragmophora	Pseudosagitta sp.	Hexanauplia* Calanoida	Ctenocalanus citer
Aphragmophora	Sagittidae indet	Calanoida	
Aphragmophora	Solidosagitta marri		Ctenocalanus sp.
Choreotrichida	Tintinnina indet	Cyclopoida Calanoida	Cyclopoida nauplius indet
Cirripedia***	Cirripedia cyprid		Drepanopus sp.
Cirripedia***	Cirripedia nauplius	Calanoida	Euaugaptilus sp.
Diplostraca	Evadne sp.	Calanoida	Eucalanus hyalinus
Diplostraca	Podon sp.	Calanoida	Eucalanus sp.
Siphonophorae	Abylidae indet	Calanoida	Euchirella rostrata
Siphonophorae	Chelophyes sp.	Calanoida	Euchirella rostromagna
Cnidaria**	Cnidaria indet	Calanoida	Euchirella sp.
Siphonophorae	Lensia sp. +	Harpacticoida	Euterpina sp.
Siphonophorae	Siphonophorae nectophore	Cyclopoida	Farranula sp. +
Siphonophorae	Siphonophorae sp.	Calanoida	Haloptilus oxycephalus
Narcomedusae	Solmundella bitentaculata	Harpacticoida	Harpacticoida indet
Calanoida	Acartia (Acartia) danae	Calanoida	Heterorhabdus austrinus
Calanoida	Acartia (Acartiura) tranteri +	Calanoida	Heterorhabdus lobatus
Calanoida	Acartia (Odontacartia) pacifica +	Calanoida	Heterorhabdus sp.
Calanoida	Acartia sp.	Poecilostomatoida	Heterorhabdus spinifrons
Calanoida	Aetideus australis +	Calanoida	Lubbockia sp.
Calanoida	Aetideus sp.	Calanoida	Lucicutia flavicornis +

Table 3. Zooplankton species/taxa list for the SO-CPR Survey. C: Calyptopis stage, F: Furcilia stage. *Class; **Phylum; ***Infraclass; ****Subphylum. +: New species /taxa added at this workshop. (2/3)

Order	Taxa	Order	Taxa
Calanoida	Lucicutia sp.	Calanoida	Scaphocalanus echinatus +
Calanoida	Mecynocera clausi	Calanoida	Scaphocalanus farrani
Calanoida	Mecynocera sp. +	Calanoida	Scolecithricella minor
Calanoida	Mesocalanus sp. +	Calanoida	Scolecithricella sp.
Calanoida	Mesocalanus tenuicornis	Calanoida	Calanoida indet (small)
Calanoida	Metridia gerlachei	Calanoida	Stephos longipes
Calanoida	Metridia lucens	Calanoida	Subeucalanus longiceps
Calanoida	Metridia sp.	Calanoida	Subeucalanus sp.
Calanoida	Microcalanus pygmaeus	Calanoida	Sulcanus conflictus
Harpacticoida	Microsetella norvegica	Calanoida	Temora turbinata
Harpacticoida	Microsetella rosea	Poecilostomatoida	Triconia antarctica
Harpacticoida	Microsetella sp.	Crustacea****	Crustacea nauplius indet
Calanoida	Nannocalanus minor +	_	Nauplius indet
Calanoida	Neocalanus gracilis	Ctenophora**	Ctenophora indet
Calanoida	Neocalanus tonsus	Cumacea	Cumacea indet
Harpacticoida	Oculosetella gracilis +	Decapoda	Decapoda (natant) indet juv
Cyclopoida	Oithona atlantica +	Decapoda	Decapoda megalopa indet
Cyclopoida	Oithona frigida	Decapoda	Decapoda nauplius indet
Cyclopoida	Oithona longispina +	Decapoda	Decapoda phyllosoma indet
Cyclopoida	Oithona similis	Decapoda	Decapoda zoea indet
Cyclopoida Cyclopoida	Oithona sp.	Decapoda	Munida gregaria
Poecilostomatoida	Oncaea curvata	Decapoda	Nematocarcinus longirostris
Poecilostomatoida	Oncaea mediterranea +		Sergestidae indet
Poecilostomatoida	Oncaea sp.	Decapoda Stomatopoda	Squilla sp.
Poecilostomatoida	1	, ,	Noctiluca scintillans
Calanoida	Oncaea venusta typica +	Noctilucales	Echinoidea larvae
	Onchocalanus sp.	Echinoidea*	
Calanoida	Paracalanus aculeatus +	-	Egg indet
Calanoida	Paracalanus indicus +	1 =	Egg mass
Calanoida	Paracalanus sp.	Euphausiacea	Euphausia crystallorophias
Calanoida	Paraeuchaeta antarctica	Euphausiacea	Euphausia crystallorophias calyptopis
Calanoida	Paraeuchaeta barbata	Euphausiacea	Euphausia crystallorophias furcilia
Calanoida	Paraeuchaeta biloba	Euphausiacea	Euphausia frigida
Calanoida	Paraeuchaeta exigua	Euphausiacea	Euphausia frigida calyptopis
Calanoida	Paraeuchaeta sp.	Euphausiacea	Euphausia frigida furcilia
Calanoida	Paraheterorhabdus farrani	Euphausiacea	Euphausia hanseni furcilia
Calanoida	Paralabidocera antarctica	Euphausiacea	Euphausia longirostris
Calanoida	Pleuromamma abdominalis	Euphausiacea	Euphausia longirostris calyptopis
Calanoida	Pleuromamma borealis	Euphausiacea	Euphausia longirostris furcilia
Calanoida	Pleuromamma gracilis	Euphausiacea	Euphausia lucens
Calanoida	Pleuromamma piseki	Euphausiacea	Euphausia recurva
Calanoida	Pleuromamma robusta	Euphausiacea	Euphausia similis
Calanoida	Pleuromamma sp.	Euphausiacea	Euphausia similis furcilia
Calanoida	Pleuromamma xiphias	Euphausiacea	Euphausia spinifera
Calanoida	Rhincalanus gigas	Euphausiacea	Euphausia spinifera calyptopis
Calanoida	Rhincalanus gigas nauplius	Euphausiacea	Euphausia spinifera furcilia
Calanoida	Rhincalanus nasutus +	Euphausiacea	Euphausia superba
Calanoida	Rhincalanus sp.	Euphausiacea	Euphausia superba C1
Poecilostomatoida	Sapphirina nigromaculata +	Euphausiacea	Euphausia superba C2
Poecilostomatoida	Sapphirina sp.	Euphausiacea	Euphausia superba C3

Table 3. Zooplankton species/taxa list for the SO-CPR Survey. C: Calyptopis stage, F: Furcilia stage.

*Class; **Phylum; ***Infraclass; ****Subphylum. +: New species /taxa added at this work-shop. (3/3)

Order	Taxa	Order	Taxa
Euphausiacea	Euphausia superba calyptopis	Thecosomata	Clio sp.
Euphausiacea	Euphausia superba F1	Gymnosomata	Clione limacina antarctica
Euphausiacea	Euphausia superba F2	Gymnosomata	Clione sp.
Euphausiacea	Euphausia superba F3	Gastropoda*	Gastropoda indet
Euphausiacea	Euphausia superba F4	Thecosomata	Limacina sp.
Euphausiacea	Euphausia superba F5	Gastropoda*	Pteropoda indet
Euphausiacea	Euphausia superba F6	Gymnosomata	Spongiobranchaea australis
Euphausiacea	Euphausia superba furcilia	Teuthida	Teuthida indet
Euphausiacea	Euphausia triacantha	Isopoda	Isopoda indet
Euphausiacea	Euphausia triacantha calyptopis	Bivalvia*	Bivalvia larvae
Euphausiacea	Euphausia triacantha furcilia	Mysida	Mysidae indet
Euphausiacea	Euphausia vallentini	Ostracoda*	Ostracoda indet
Euphausiacea	Euphausia vallentini calyptopis	Chordata**	Pisces egg
Euphausiacea	Euphausia vallentini furcilia	Chordata**	Pisces larvae
Euphausiacea	Euphausiidae calyptopis indet	Myctophiformes	Myctophidae indet
Euphausiacea	Euphausiidae furcilia indet	Perciformes	Pleuragramma antarctica
Euphausiacea	Euphausiidae indet	Myctophiformes	Protomyctophum sp.
Euphausiacea	Euphausiidae metanauplius indet	Phyllodocida	Alciopidae indet
Euphausiacea	Euphausiidae nauplius indet	Phyllodocida	Iospilidae indet
Euphausiacea	Nematoscelis megalops	Phyllodocida	Lopadorrhynchidae indet
Euphausiacea	Nyctiphanes australis	Phyllodocida	Maupasia sp.
Euphausiacea	Nyctiphanes australis calyptopis	Phyllodocida	Pelagobia longicirrata
Euphausiacea	Nyctiphanes australis furcilia	Phyllodocida	Phalacrophorus pictus
Euphausiacea	Thysanoessa gregaria	Phyllodocida	Phalacrophorus sp.
Euphausiacea	Thysanoessa gregaria calyptopis	Polychaeta*	Polychaeta indet
Euphausiacea	Thysanoessa gregaria furcilia	Polychaeta*	Polychaeta larvae
Euphausiacea	Thysanoessa gregaria Turcina Thysanoessa macrura	Phyllodocida	Tomopteris carpenteri
Euphausiacea	Thysanoessa macrura C1	Phyllodocida	Tomopteris sp.
Euphausiacea	Thysanoessa macrura C1 Thysanoessa macrura C2	Phyllodocida	Travisiopsis levinseni
Euphausiacea	Thysanoessa macrura C2 Thysanoessa macrura C3	Phyllodocida	Travisiopsis tevinseni Travisiopsis sp.
1		Phyllodocida	Travisiopsis sp. Typhloscolex muelleri
Euphausiacea Euphausiacea	Thysanoessa macrura calyptopis Thysanoessa macrura F1	Phyllodocida	Vanadis antarctica
		Phyllodocida	Vanadis amarenea Vanadis longissima
Euphausiacea	Thysanoessa macrura F2	Radiozoa**	Radiozoa indet
Euphausiacea	Thysanoessa macrura F3	1	
Euphausiacea	Thysanoessa macrura F4	Appendicularia* Doliolida	Appendicularia indet
Euphausiacea	Thysanoessa macrura F5	1	Doliolidae indet
Euphausiacea	Thysanoessa macrura F6	Copelata	Fritillaria sp.
Euphausiacea	Thysanoessa macrura furcilia	Copelata	Oikopleura sp.
Euphausiacea	Thysanoessa macrura metanauplius	Pyrosomatida	Pyrosomatidae indet
Euphausiacea	Thysanoessa sp.	Salpida	Salpa fusiformis
Euphausiacea	Thysanoessa sp. furcilia	Salpida	Salpidae indet
Foraminifera**	Foraminifera indet	Salpida	Salpa thompsoni
Rotaliida	Globigerina bulloides	Salpida	Soestia zonaria
Rotaliida	Globigerinita uvula	Salpida	Thalia sp.
Rotaliida	Globorotalia sp.		
Rotaliida	Neogloboquadrina incompta		
Rotaliida	Neogloboquadrina pachyderma		
Rotaliida	Turborotalita quinqueloba		
Thecosomata	Clio pyramidata	1	

Type	Color	Size	Split-strands type
Strand	clear/transparent black blue red yellow green other	S = Small (\leq 300 µm) M = Medium ($>$ 300 µm \leq 2 mm) L = Large ($>$ 2 mm \leq 5 mm) X = Extra-large ($>$ 5 mm)	Mono = Monofilament-type strand Flat = Flat-type strand
Bead	clear/transparent black blue red yellow green other	$S = Small (\le 300 \ \mu m)$ $M = Medium (> 300 \ \mu m \le 2 \ mm)$ $L = Large (> 2 \ mm \le 5 \ mm)$ $X = Extra-large (> 5 \ mm)$	
Flake	clear/transparent black blue red yellow green other	$S = Small (\le 300 \ \mu m)$ $M = Medium (> 300 \ \mu m \le 2 \ mm)$ $L = Large (> 2 \ mm \le 5 \ mm)$ $X = Extra-large (> 5 \ mm)$	

Table 4. Microplastic counting rules from GACS program.

4.5. Database

The SCAR SO-CPR Database is registered with the Australian Antarctic Data Centre (AADC) and can be accessed via: http://data.aad.gov.au/aadc/metadata/metadata.cfm? entry_id=AADC-00099. We checked the data handling for database input. From there, it is distributed to various international agencies and databases/portals including, but not limited to:

- GACS (http://globalcpr.org/)
- SOOS (Southern Ocean Observing System; http://www.soos.ag/)
- OBIS (Ocean Biogeographic Information System; https://obis.org/)
- GBIF (Global Biodiversity Information Facility; https://www.gbif.org/)
- SCAR's BIODIVERSITY.AQ (http://www.biodiversity.aq/)
- Atlas of Living Australia (https://www.ala.org.au/)
- CCAMLR (Commission for the Conservation of Antarctic Marine Living Resources; https://www.ccamlr.org/)
- IGMETS (International Group for Marine Ecological Time Series; https://igmets.net/)

5. Future directions

5.1. Status Report

As a product of the Action and Expert Group on CPR research, we are continuing to work on a special report to SCAR on the Status and Trends of Southern Ocean zooplankton. This report will bring together all information derived over 25 years into the SO-CPR Survey. This report will also identify any trends (seasonal or long-term) in relation to

changes in abundance, shifts in distribution, timing of events, or changes in composition and community composition (Takahashi *et al.*, 2017). The second workshop on a special report was conducted in May 2018 at the National Institute of Polar Research Japan. The purposes of the workshop were to summarize the SO-CPR Survey activities during the first 25 years, and to advance the task of writing the special report. This report involves a review of more than 50 publications, including peer-reviewed papers, proceedings, reports, and theses. We have already finished about 90% of the draft and will hold the final workshop for completing the report in May 2019.

5.2. Future conferences

The next "SCAR Business Meeting and Open Science Conference" will be held in Hobart, Australia in August 2020, and the "SCAR Biology Symposium" will be held in Christchurch, New Zealand in 2021. We will encourage high-level attendance by participants in our project, and a SO-CPR Database Expert Group meeting to discuss the development of our CPR program will be held in association with the symposium.

5.3. Future training and standards workshop

The SO-CPR Survey involves several countries with shipping activity in the Southern Ocean. Issues that were identified through this workshop include inconsistencies in taxonomic skill and identification across different laboratories and the lack of technicians with high-quality standard techniques. One important future task for maintaining high-quality data is therefore developing and enhancing the skills of current and new technicians. We will plan a larger standardisation workshop in 2020 to maintain the high standards for procedures and identification for quality control and assurance among the different laboratories around the world. Countries interested in joining SO-CPR will be encouraged to participate in our workshops. We also discussed ways to improve future training such as the making of a SO-CPR processing manual and zooplankton counting rule book. The new counting rules and taxonomic list will be further described in the new procedures manual. Furthermore, to expand the program, we are planning a training workshop for 2019 to help India initiate Southern Ocean CPR work. We have had discussions with scientists at the Goa National Centre for Polar and Ocean Research (NCPOR) about running a CPR from Goa to Antarctica during the annual resupply of India's Antarctic station. To achieve this, we will need to provide the necessary training to participants.

Acknowledgements

The workshop was supported financially or through in-kind support by the SCAR SO-CPR Database Expert Group and the Research Organization of Information and Systems, Japan. We are particularly grateful to the Australian Antarctic Division for its generous support in organizing and hosting the workshop.

References

Costello, M.J., Bouchet, P., Boxshall, G., Fauchald, K., Gordon, D., Hoeksema, B.W., Poore, G.C.B., van Soest, R.W.M., Stöhr, S., Walter, T.C., Vanhoorne, B., Decock, W. and Appeltans, W. (2013): Global Coordination

- and Standardisation in Marine Biodiversity through the World Register of Marine Species (WoRMS) and Related Databases. PLoS ONE. **8**, e51629, doi:10.1371/journal.pone.0051629.
- Hosie, G.W., Fukuchi, M. and Kawaguchi, S. (2003): Development of the Southern Ocean Continuous Plankton Recorder survey. Prog. Oceanogr. **58**, 263–283, doi:10.1016/j.pocean.2003.08.007.
- Isobe, A., Uchiyama-Matsumoto, K., Uchida, K. and Tokai, T. (2017): Microplastics in the Southern Ocean. Mar. Pollut. Bull. 114, 623–626, doi: 10.1016/j.marpolbul.2016.09.037.
- Takahashi, K.T., Hosie, G.W., Kitchener, J.A., McLeod, D.J., Stevens, C., Robinson, K., Jonas, T. and Fukuchi, M. (2011): Report on the Southern Ocean Continuous Plankton Recorder (SO-CPR) Standards Workshop: SCAR Expert Group on CPR Research. Nankyoku Shiryô (Antarctic Record). 55, 279–286, doi: 10.15094/00009627.
- Takahashi, K.T., Kitchener, J.A., Robinson, K. and Hosie, G.W. (2017): Report on the Southern Ocean Continuous Plankton Recorder (SO-CPR) Standards Workshop 2016: SCAR SO-CPR Database Expert Group. Nankyoku Shiryô (Antarctic Record). 61, 1–10, doi: 10.15094/00014175.
- Waller, C.L., Griffiths, H.J., Waluda, C.M., Thorpe, S.E., Loaiza, I., Moreno, B., Pacherres, C.O. and Hughes, K.A. (2017): Microplastics in the Antarctic marine system: An emerging area of research. Sci. Total Environ. 598, 220–227, doi: 10.1016/j.scitotenv.2017.03.283.