## Microwave signal changes by melting and refreezing of ice sheets and ice caps in the Arctic

Nuerasimuguli Alimasi<sup>1</sup>, Hiroyuki Enomoto<sup>2</sup>

<sup>1</sup>National Institute of Polar Research, 10-3, Midori-cho, Tachikawa, Tokyo 190-8518 Japan <sup>2</sup> Graduate University of Advanced Studies (SOKENDAI,) 10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan

The Arctic is experiencing rapid environmental change due to climate warming, resulting in snow condition changes. Passive microwave observation is a useful tool to monitor these changes. Arctic research projects are sending filed research groups and establishing observation sites in the various places in the Arctic. Satellite observation is available to supporting research planning, evaluation of observation period and place, as satellite observation can cover in time and space. This study used satellite passive microwave observation as this is available even in polar night when the sun light is not available, and cloudy or foggy conditions.

We collected microwave data from research sites in the North America, Siberia, Svalbard, Scandinavia and Greenland (Table 1). Many of those area have been observed by Japanese research groups. The data was sampled by pixel based on the location data of observation site and used for monitoring local snow and ice conditions. The present study introduces snow cover and melting durations. This study about the melting observation at Greenland ice sheet (Fig.1)

Microwave brightness temperature of high frequencies increases by surface melting Greenland Ice Sheet. The melting have been obsered by various techniques. Howver, the lower frequency of microwave shows comlicated variations brightness temperature change. The melting and freezing affect emission from ice sheet and observed by different frequencies.

This study introduces the complexities of microwave emiission from ice sheet and ice caps in the Arctic, and also compares with the observation in the Antarctica.



Table 1. Location information of observation area.

Figure 1. Melting observation in Greenland Ice Sheet.

[K]

280

260

240

220

200

## References

Alimasi, N. and H. Enomoto, Arctic snow monitoring by satellite microwave observation, Journal of Japanese Society of Snow and Ice, 79(1), 17-30, 2017.

Alimasi, N. H. Enomoto and N. Hirasawa, Summer melting observation at the marginal region of the Antarctic ice sheet by microwave radiometer, Journal of Japanese Society of Snow and Ice, in press, 2018.