Important contributions of sea-salt aerosols to atmospheric bromine cycle in the Antarctic coasts

K. Hara¹, K. Osada², M. Yabuki³, H. Takashima¹, N. Theys⁴, and T. Yamanouchi⁵

¹Fukuoka University, ₂Nagoya University, ³RISH, Kyoto University, ⁴Belgian Institute for Space Aeronomy, and ⁵NIPR

Polar sunrise activates reactive bromine (BrO_x) cycle on the Antarctic coasts. BrO_x chemistry relates to depletion of O₃ and Hg in polar regions. To elucidate atmospheric sea-salt and halogen chemisty in the Antarctic coasts, we made sampling of aerosols, blowing snow, and snowfall at Syowa Station, Antarctica from 2004 – 2006 (JARE45-47). Water soluble constituents were determined with an ion chromatograph in our laboratory. Earlier studies have indicated "blowing snow" as a source of atmospheric BrO_x . However, surface O₃ depletion and BrO enhancement occurs rarely under blowing snow conditions at Syowa Station, Antarctica. Therefore, trigger processes for BrO_x activation other than the heterogeneous reactions on blowing snow particles must be considered. Results of this study show that enhancement of sea-salt aerosols (SSA) and heterogeneous reactions on SSA are the main key processes for atmospheric BrO_x cycle activation. Blowing snow had Br⁻ enrichment, in contrast to strong Br⁻ depletion in SSA. In-situ aerosol measurements and satellite BrO measurements demonstrated clearly that a BrO plume appeared simultaneously in SSA enhancement near the surface. Results show that surface O₃ depletion at Syowa Station occurred in aerosol enhancement because of SSA dispersion during the polar sunrise. Amounts of depleted Brfrom SSA were matched well to the tropospheric vertical column density of BrO and BrO_x concentrations found in earlier work. Our results indicate direct evidence that SSA enhancement by strong winds engenders activation of atmospheric BrO_x cycles via heterogeneous reactions on SSA.