Abstract

surface elevation above sea level. This thick ice, which rarely breaks out, locks a glacier tongue, iceberg tongues, and many isolated icebergs in the western Lützow-Holm Bay.

(Received March 31, 1983)

BRINE EXCLUSION AND SEA ICE SALINITY (Abstract)

Masaaki WAKATSUCHI

The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060

The exclusion process of brine from growing sea ice has been quantitatively studied under various ice growing conditions in the field and laboratory. With a decrease in ice growth rate the salinity of brine increases markedly but its volume flux decreases. Consequently, the salt flux decreases with decreasing ice growth rate, and hence the amount of salt excluded depends largely upon the volume rather than the salinity. The total volume of brine excluded during the ice formation process increases with increasing both growth rate and duration of formation. Change in salinity of sea ice with ice growing conditions can be understood from the above observation results on brine exclusion. A lower salinity in sea ice that took a longer time to grow to a fixed thickness is due to the exclusion of a larger amount of brine with a higher salinity during the ice formation process. Meanwhile, a higher salinity in thick sea ice that formed during a certain period is due to the exclusion of a smaller amount of brine with a lower salinity per unit growth amount of ice during the period. These results suggest that in future the salinity and volume of brine excluded during the formation process of sea ice can be estimated approximately by measuring the formation time, thickness and salinity of the sea ice.

(Received April 7, 1983)

THE OCEANIC EDDY IN THE SOUTHERN OCEAN (Abstract)

Jiro FUKUOKA*, Hideo MIYAKE* and Kou KUSUNOKI**

*Faculty of Fisheries, Hokkaido University, 1–1, Minato-cho 3-chome, Hakodate 041 **National Institute of Polar Research, 9–10, Kaga 1-chome, Itabashi-ku, Tokyo 173

The object of this study is the analysis of oceanographical structure in the Southern Ocean (south of 50° S) around Antarctica. We deal with 627 oceanographical data including nutrient for the period from 1932 to 1974, provided by the Japan Oceanographical Data Center. In this report the analysis is made only on the Pacific Ocean side from the viewpoint of the ocean current pattern with the use of the dynamical topography and the water mass distributions by T-S diagram.

From the dynamical topography in the Pacific we can find the anticyclonic circulation near $100^{\circ}W$ to $90^{\circ}W$ and the cyclonic circulation near $135^{\circ}W$. In both areas the water mass analysis is also made by using T-S diagram. The water masses along $100^{\circ}W$ have high water temperature, $6^{\circ}C$ to $5^{\circ}C$ from surface to 150 m depth near $55^{\circ}S$ and $3^{\circ}C$ to $2^{\circ}C$ from surface to 150 m depth near $60^{\circ}S$, whereas the water masses along $135^{\circ}W$ show lower temperature, that is, $3^{\circ}C$ to $2^{\circ}C$ from surface to 150 m depth near $56^{\circ}S$ and $1^{\circ}C$ to $0^{\circ}C$ near $60^{\circ}S$. Namely, we