Bi-directional electrons and their ionization in the ionosphere: ERG-EISCAT simultaneous observations

Y. Ogawa^{1,2}, Y. Miyoshi³, S. Kasahara⁴, K. Hosokawa⁵, K. Shiokawa³, T. Hori³, Y. Kazama⁶, K. Seki⁴, S. Kurita², Y. Kasaba⁷, M. Shoji³, Y. Kasahara⁸, I. Virtanen⁹, A. Kadokura^{1,2,10}, K. Asamura¹¹, A. Matsuoka¹¹, M. Teramoto³, I. Shinohara¹¹, S. Yokota¹², K. Keika⁴, B.-J. Wang^{6,13}, S.-Y. Wang⁶, S. W. Y. Tam¹⁴, and T.-F. Chang^{3,14}

¹ National Institute of Polar Research, Tokyo, Japan
² The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, Japan
³ Institute for Space-Earth Environmental Research, Nagoya University, Aichi, Japan
⁴ University of Tokyo, Tokyo, Japan
⁵ University of Electro-Communications, Tokyo, Japan.
⁶ Academia Sinica Institute of Astronomy and Astrophysics, Taipei, Taiwan
⁷ Tohoku University, Miyagi, Japan.
⁸ Kanazawa University, Kanazawa, Japan.
⁹ The University of Oulu, Oulu, Finland.
¹⁰ Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Japan.
¹² Osaka University, Osaka, Japan
¹³ Graduate Institute of Space Science, National Central University, Taioyuan, Taiwan

We report the first direct comparison between bi-directional electrons in the magnetosphere at L=~7 and their effects on ionization in the ionosphere, based on coordinated ERG and EISCAT observations. The simultaneous observations show electron density enhancements prior to the bi-directional electrons and a small electric field spike accompanied by the bi-directional electrons, implying that this bi-directional electron event was generated through auroral acceleration processes near/in the plasma sheet boundary layer. The comparison also reveals that precipitating electron fluxes were quantitatively consistent with field-aligned fluxes of electrons estimated with the EISCAT data. The anti-parallel electron fluxes were smaller than the parallel fluxes at energies below ~3 keV and above ~14 keV, suggesting that the former was caused by a potential drop of ~3 kV below the satellite and the latter by a reflection process of secondary electrons in the ionosphere.