1	Effects of horizontal wind structure on a gravity wave event in the
2	middle atmosphere over Syowa (69°S, 40°E), the Antarctic
3	Masaru Kogure ^{1,2} , Takuji Nakamura ^{2,1} , Mitsumu K. Ejiri ^{2,1} , Takanori Nishiyama ^{2,1} ,
4	Yoshihiro Tomikawa ^{2,1} and Masaki Tsutsumi ^{2,1}
5	¹ SOKENDAI (Department of Polar Science, The Graduate University for Advanced
6	Studies), 10-3 Midoricho, Tachikawa, Tokyo, Japan
7	² National Institute of Polar Research, 10-3 Midoricho, Tachikawa, Tokyo, Japan
8	*Corresponding author: Masaru Kogure (kogure.masaru@nipr.ac.jp)
9	
10	Key points
11	• Enhancement of gravity wave energy in the upper stratosphere and lower
12	mesosphere was observed by Syowa lidar in the middle of August 2014.
13	• The enhancement was probably caused by the refraction of gravity waves emitted
14	from various latitudes toward Syowa, due to the poleward tilting of the polar night
15	jet with altitude.

• A depression of gravity wave energy during the enhancement could be induced by

17 critical level filtering due to a synoptic scale disturbance in the upper stratosphere.

18

19 Abstract

32

Plain language summary

20 Nightly mean potential energy of gravity waves (GWs) per unit mass (E_p) over Syowa 21 Station (69°S, 40°E) was calculated from temperature profiles observed by the Rayleigh/Raman lidar from 2011 to 2015. The E_p values in the upper stratosphere and 22 23 lower mesosphere were significantly enhanced on August 8–21, 2014, except on August 24 12. A ray tracing analysis showed that large-scale GWs emitted from various latitudes 25 could be refracted and forced to converge above Syowa due to the poleward tilting of the polar night jet (PNJ) with altitude. It should be noted that E_p on August 12 was 26 27 smaller than the other values during the enhancement, despite similar PNJ conditions. A 28 synoptic scale disturbance which passed on August 12 could have blocked the GWs 29 from propagating upward through critical level filtering. These results suggest that 30 convergence of the wave should be considered as a part of the intermittency of the 31 GWs.

Atmospheric waves of short horizontal scale, known as gravity waves (GW), transport
 momentum through the atmosphere from the Earth's surface, and drive North-South

35	circulations. These airflows profoundly influence the temperature structure at heights
36	corresponding to the ozone layer. However, the small scale of GWs makes it necessary
37	to artificially represent them in atmospheric models. GW activity is quite variable in
38	space and time and the representation of this variation is a key to improve long-term
39	climate forecasts. Previous observational studies mainly discussed variations of GW
40	sources and wind filtering, but such variations do not explain the observations in this
41	study. We suggest that the GWs generated at various latitudes converged to our
42	observation area enhancing the local GW activity. Moreover, the convergence was
43	found to be related to the structure of the polar night jet. This result suggests that the
44	lack of wave horizontal propagation typical in model wave parameterizations could
45	contribute to their cold bias and unrealistic representation of ozone hole over the
46	Antarctic in spring.
47	Keyword: Gravity wave, Middle atmosphere, Lidar, Synoptic scale disturbance, Polar
48	night jet, Intermittency.

1. Introduction.

51	Gravity waves (GWs) transport their energy and momentum vertically from
52	the lower to upper atmosphere (Holton, 1983; Lindzen, 1981; Matsuno, 1982), which
53	causes meridional circulation and influences temperature structures (Hitchman et al.,
54	1989). The effect of the GWs is usually described by parameterizations in operational
55	general circulation models (GCMs), because the GCMs cannot explicitly represent a
56	full spectrum of GWs due to limitations of computational resources. However, GW
57	parameters (e.g., local and temporal variation of GW activities) in the GW drag
58	parametrization scheme are not well constrained by observations (Bühler and Mcintyre,
59	2003; Alexander et al., 2010; Hertzog et al., 2012; Gellar et al., 2013). In addition,
60	parameterizations in most of practical GCMs take into account only vertical propagation
61	of these waves neglecting horizontal propagation, which provides inaccurate magnitude,
62	direction, and distribution of GW drag (Kalisch et al., 2014). In particular, some model
63	studies such as Alexander et al. (2016), Dunkerton (1984) and Sato et al. (2009)
64	highlighted that high GW activity near polar night jet (PNJ) are caused by the horizontal

65	propagation of these waves. The GWs with westward wavenumbers are refracted
66	toward the PNJ due to the meridional zonal wind shear and converge to this region.
67	The unrealistic representation of the effect of the GWs in operational models causes a
68	cold bias in winter and spring over the Antarctic, which leads to an unrealistic forecast
69	of ozone depletion (Butchart et al., 2011; Garcia et al., 2017). Further observations to
70	quantify actual GW characteristics, e.g., their amplitude, intermittency, and propagation
71	are required in order to physically constrain the GW scheme. In particular, the
72	observations near the southern PNJ region are important because of the uncertainty in
73	the parametrization scheme and the high GW activity in this area. In addition, study of
74	GW activity is easier in the southern PNJ region because sudden stratospheric warmings
75	seldom happen.
76	Kogure et al. (2017) demonstrated seasonal and vertical variations of GW activity over
77	Syowa Station in the Antarctic (69°S, 40°E), using a Rayleigh/Raman (RR) lidar during
78	the period 2011 to 2013. However, they did not discuss shorter time variations, i.e., day-
79	to-day variation. The present work focuses on a high activity event for August 8–21,
80	2014 which was discovered through a detailed analysis of 5 years of observational data.

81	The present paper is structured as follows: Observational systems and data sets are
82	described in section 2. In section 3, evidence of enhanced GW activity in the upper
83	stratosphere and the lower mesosphere (USLM) over Syowa on Augsut 8-21, 2014 is
84	presented. We investigated the cause of this enhancement using meteorological
85	reanalysis data and the results are presented in section 4. The conclusions are drawn in
86	section 5.
87	2. Observation and Data Sets
88	The RR lidar was installed in January 2011 at Syowa by the 52 nd Japanese Antarctic
89	Research Expedition. Its transmitter is a pulsed neodymium: yttrium/aluminum/garnet
90	laser (355 nm) with a 300 mJ pulse energy and a 20 Hz repetition frequency. Its receiver
91	telescope has a primary mirror with an 82 cm diameter and is equipped with three
92	photomultiplier tubes. For further details regarding this RR lidar system, see Suzuki et
93	al. (2012). The RR lidar observed the photon count profiles at night since May 2011. In
94	this study, the temperature profiles were derived and analyzed from 2011 to 2015
95	(except for summer periods).

96	The temperature profiles in an altitude of typically 10-80 km were derived from the
97	photon counts acquired by the RR lidar, as was performed by Kogure et al. (2017). The
98	effective vertical and temporal resolutions were 900 m and 1 h, respectively. A
99	temperature perturbation associated with the GWs with vertical wavelengths (λ_z) in the
100	range of 1.8–16 km and a period (τ) longer than 2 h (the Nyquist period) was derived
101	from the temperature profile. The approach used was introduced by Kogure et al. (2017)
102	and similar to a method of Duck et al. (2001). A background temperature profile which
103	was estimated using a cubic polynomial function for the temperature corresponding to a
104	24 km altitude range, was subtracted from the observed temperature profile in order to
105	derive the temperature perturbation of the GWs. The potential energy of the GWs per
106	unit mass, E_p J kg ⁻¹ , was then calculated to measure the GW activity, as performed by
107	Whiteway and Carswell (1994). For further details regarding this process and errors of
108	the E_p values, see Kogure et al. (2017).
109	3. Result

110 Figures 1 (a), (b), and (c) show the nightly mean E_p at 40, 50, and 60 km 111 altitudes, respectively, where the E_p values were logarithmically averaged over an

112	altitude range of 5.4 km centered at the respective altitudes. This value increased by $2-3$
113	times at each 10 km of altitude increase between 40 and 60 km altitudes and the winter
114	(June to August) mean values at each altitude were 2–3 times larger than those of the
115	fall (March to April) and spring (October) periods. These results are consistent with the
116	results from previous studies in the Antarctic region (Kaifler et al., 2015; Kogure et al.,
117	2017; Liu et al., 2014; Zhao et al., 2017). Most of the E_p values for the winter period
118	were within $\overline{E_p}_{winter} \pm \sigma_{winter}$, i.e., 13.3–40.0 J kg ⁻¹ at 40 km, 23.4–61.4 J kg ⁻¹ at 50
119	km, and 65.2–186.9 J kg ⁻¹ at 60 km, where $\overline{E_p}_{winter}$ is the logarithmic mean of the
120	nightly mean potential energy (E_p) in June–August for the five years and σ_{winter} is
121	the logarithmic standard deviation of E_p . However, the most E_p values for August 8–21
122	in 2014 at 50 and 60 km altitudes were larger than $\overline{E_p}_{winter} + \sigma_{winter}$.
123	In order to investigate this enhancement in more detail, the plots for August 2014 are
124	enlarged as shown in Figures 1 (d), (e), and (f). The E_p values at 40 km during that
125	month are comparable to the other years. However, the E_p values at 50 and 60 km for
126	August 8–21, 2014 (except for August 12) were larger than the winter mean by more
127	than one standard deviation, i.e., larger than 61.4 J kg ⁻¹ at 50 km and 186.9 J kg ⁻¹ at 60

128	km, and the mean values in the periods at 60 km (506 J kg ⁻¹) were about five times as
129	large as the mean value for August 2015 (88 J kg ⁻¹). Thus, in the next section, we
130	highlight and discuss the causes of this enhancement for the observation period August
131	8–21, 2014 in addition to the depression on August 12.
132	4. Discussion
133	4.1 Convergence of the GWs due to the poleward tilting of the PNJ with altitude
134	One possible cause of the aforementioned enhancement is the existence of an
135	additional GW source for August 8–21, 2014 between 40 and 50 km. The possible
136	source is the spontaneous adjustment near the PNJ region, because it is difficult for
137	other sources, e.g., shear instability, to excite large-scale GWs (Plougonven and Zhang,
138	2014).
139	Sato and Yoshiki (2008) and Murphy et al. (2014) suggested that large amplitude GWs
140	observed in the lower stratosphere could be emitted by spontaneous adjustment near the
141	imbalance of the PNJ. In order to investigate this possibility, a residual of the nonlinear
142	balance equation ($ \Delta NBE $), which indicates the degree of imbalance, was calculated at
143	1 hpa (~43 km altitude) and 0.5 hPa (~47 km altitude) above Syowa. This is a similar

144	approach to Zhang (2004) from the modern-era retrospective analysis for research and
145	applications (MERRA) (Rienecker et al., 2011). $ \Delta NBE $ values during the GW
146	enhancement were 4.7×10^{-9} s ⁻² and 6.0×10^{-9} s ⁻² on average at 1 hPa and 0.5 hPa,
147	which is smaller than the value for August 1–7, 2014 before the enhancement (9.0 \times
148	10^{-9} s ⁻² at 1 hPa and 1.0×10^{-8} s ⁻² at 0.5 hPa on average) (not shown). Another
149	possibility is that the observed GW enhancement over Syowa was caused by the
150	convergence of GW packets propagating from lower and higher latitudes due to their
151	meridional propagation. Since the GWs observed by the RR lidar have a long wave
152	period, i.e., longer than 2 h, they can travel a long horizontal distance during their
153	vertical propagation. We evaluated this possibility by analyzing the ray paths of the
154	GWs based on the ray-tracing method of Dunkerton (1984) and comparing the results
155	for the enhancement period (August 8–21, 2014) and August 2015. The nightly mean
156	wind and temperature fields acquired from MERRA for each observation duration on
157	August 8–21, 2014 and August 2015 were used as the background for the ray-tracing
158	procedure. It was also assumed that the background fields were uniform in longitude.
159	The GWs were emitted upward from 10 km altitude between 20° S and 80° S at 5°

160	intervals. An initial horizontal wavelength and ground-based period were assumed to be
161	1000 km and 10 h, respectively, because such large-scale GWs are typically detected by
162	lidars (Gardner et al., 1998; Wilson et al., 1991). An initial k value, i.e., zonal
163	wavenumber, was assumed to be negative, i.e., westward. The GWs with westward
164	wavenumber in the lower latitudes than the PNJ are refracted to the higher latitudes due
165	to the meridional gradient of zonal wind. On the other hand, the GWs in the higher
166	latitudes are refracted to lower latitudes, i.e., such waves refracted toward the PNJ
167	(Dunkerton, 1984; Ehard et al., 2017; Sato et al., 2009). Moreover, the GWs with
168	eastward wavenumber generally encounter their critical level in the middle atmosphere.
169	The initial <i>l</i> value, i.e., meridional wavenumber, was also assumed to be negative, i.e.,
170	southward, because the GW activity in the lower stratosphere, i.e., near the sources, at
171	the lower latitudes (<69° S) is generally greater than the activity near the south pole
172	regions (>69° S) (Alexander et al., 2016; Allen and Vincent, 1995; Tsuda et al., 2000).
173	The initial direction of the horizontal wavenumber vector was, therefore, assumed to be
174	south-westward.

175	Figure 2 shows the altitude-latitude sections of the nightly mean zonal wind at the
176	longitude of Syowa (40°E) on (a) August 8–21, 2014 and the monthly mean wind in (b)
177	August 2015. Solid and dashed lines indicate the parts of the rays where the GWs have
178	a vertical wavelength within and outside of 1.8–16 km, respectively. In Figure 2 (a),
179	most of the GWs converged over Syowa at approximately 55 km altitude. However, this
180	is not the case in Figure 2 (b). This could be accounted for if the PNJ in Figure 2 (a) is
181	tilted poleward with altitude from ~50° S to ~70° S and the waves with westward
182	wavenumbers are refracted toward $\sim 70^{\circ}$ S. It should be noted that the PNJ region in
183	Figure 2 (b) is tilted equatorward with altitude from $\sim 40^{\circ}$ S to $\sim 60^{\circ}$ S. Under such a
184	condition, the waves are refracted toward ~40° S. We also checked the case in 2011,
185	2012 and 2013, but no convergence was found (not shown). This is probably because
186	the PNJ did not tilt poleward with altitude. There is possibility that the GWs with other
187	initial wave parameter contributed to the enhancement of E_p values, because some
188	studies (e.g., Nicolls et al. [2010] and Chen et al. [2013]) report that the GWs with
189	equatorward wavenumber propagated from the pole to mid-latitude. The paths of the
190	GW with other initial wavenumber, ground-based period, and azimuth angle were also

191	analyzed during the enhancement and August 2015 (not shown). The results during the
192	enhancement show the convergence of GWs with 1000-2500 km horizontal
193	wavelengths, 10–20 h ground-based periods and 205–230° azimuth angles (i.e.,
194	clockwise from North). The GW parameters were similarly varied for the case of
195	August 2015. However, the GWs did not converge. Thus, we conclude that the
196	enhanced GWs shown in Fig. 1 are due to the convergence of GW packets with south-
197	westward wavenumber.
198	4.2 Critical level filtering by a synoptic scale disturbance on August 12, 2014.
199	The E_p value on August 12, 2014 was much smaller than the value of the
200	other days during August 8–21 despite a similar tilted PNJ condition to the condition of
201	Figure 2 (a). It is notable that the behavior of the meridional wind at Syowa on August
202	12 was unusual. Figure 3 shows a time-altitude section of the meridional wind over
203	Syowa during the enhancement. The meridional wind at approximately 50 km altitude
204	was primarily confined to -40 and 0 m s ^{-1} on the lidar observation days. However, on
205	August 12 the meridional wind changed drastically from +56 m s ^{-1} to -70 m s ^{-1} .
206	Horizontal maps of these winds at 0.5 hPa near this meridional wind change are shown

207	in Figure 4. A meridional wind disturbance with ~4000 km horizontal scale is clearly
208	seen near Syowa, which moved eastward. The passage of this disturbance drastically
209	changed the meridional wind from -80 m s^{-1} to $+80 \text{ m s}^{-1}$ in a region between 55 and
210	75° S, throughout which the GWs with a non-zero meridional wavenumber could easily
211	reach their critical level. Thus, it is concluded that the depression of the GW activity on
212	August 12 was likely due to the passage of a synoptic-scale disturbance in the upper
213	stratosphere over Syowa.
214	5. Conclusion.
215	The nightly mean E_p over Syowa Station (69° S, 40° E) was calculated from
215 216	The nightly mean E_p over Syowa Station (69° S, 40° E) was calculated from temperature profiles observed by the RR lidar over a five-year period from 2011 to
215 216 217	The nightly mean E_p over Syowa Station (69° S, 40° E) was calculated from temperature profiles observed by the RR lidar over a five-year period from 2011 to 2015, except for the summer periods. It was observed that E_p for August 8–21, 2014,
215216217218	The nightly mean E_p over Syowa Station (69° S, 40° E) was calculated from temperature profiles observed by the RR lidar over a five-year period from 2011 to 2015, except for the summer periods. It was observed that E_p for August 8–21, 2014, except on August 12, was significantly larger than the winter mean. The results of ray-
 215 216 217 218 219 	The nightly mean E_p over Syowa Station (69° S, 40° E) was calculated from temperature profiles observed by the RR lidar over a five-year period from 2011 to 2015, except for the summer periods. It was observed that E_p for August 8–21, 2014, except on August 12, was significantly larger than the winter mean. The results of ray- tracing analysis revealed the possibility of convergence of large-scale GWs with the
 215 216 217 218 219 220 	The nightly mean E_p over Syowa Station (69° S, 40° E) was calculated from temperature profiles observed by the RR lidar over a five-year period from 2011 to 2015, except for the summer periods. It was observed that E_p for August 8–21, 2014, except on August 12, was significantly larger than the winter mean. The results of ray- tracing analysis revealed the possibility of convergence of large-scale GWs with the south-westward wavenumbers near ~55 km altitude over Syowa, which were emitted
 215 216 217 218 219 220 221 	The nightly mean E_p over Syowa Station (69° S, 40° E) was calculated from temperature profiles observed by the RR lidar over a five-year period from 2011 to 2015, except for the summer periods. It was observed that E_p for August 8–21, 2014, except on August 12, was significantly larger than the winter mean. The results of ray- tracing analysis revealed the possibility of convergence of large-scale GWs with the south-westward wavenumbers near ~55 km altitude over Syowa, which were emitted from various latitudes. This suggests that the GWs were refracted toward Syowa by the

223	obtained on August 12 was the smallest recorded value during the enhancement. This
224	depression of the GW activity could be caused by a synoptic disturbance passing over
225	Syowa.
226	This study demonstrated that the GW activity in the Antarctic upper stratosphere and
227	lower mesosphere can be significantly enhanced by meridional propagation of the GWs,
228	i.e., refraction and suppressed by local wind fields due to a synoptic-scale disturbance,
229	i.e., critical level filtering. Although horizontal propagation has not been taken into
230	account for the GCMs, it has the potential to cause day-to-day variations of the GW
231	activity; in other words, intermittency of the GWs.
232	Acknowledgements
233	This work was supported by JSPS KAKENHI grants JP24340121 and JP15H02137.
234	The Syowa Rayleigh/Raman lidar was operated by the Japanese Antarctic Research
235	Expedition (JARE) under the prioritized project AJ1. The lidar data can be accessed at
236	http://id.nii.ac.jp/1291/00014824/.
237	References

238 Alexander, M. J., Eckermann, S., Ern, M., Geller, M., Kawatani, Y., McLandress	, C., e
--	---------

- al. (2010). Recent developments in gravity wave effects in climate models and the
- 240 global distribution of gravity wave momentum flux from observations and models.
- 241 *Q.J.R. Meteorol. Soc.*, 136: 1103–1124, doi:10.1002/qj.637
- 242 Alexander, S.P., Sato, K., Watanabe, S., Kawatani, Y., & Murphy,
- 243 D.J. (2016). Southern Hemisphere extratropical gravity wave sources and
- intermittency revealed by a middle-atmosphere general circulation model. J. Atmos.
- 245 *Sci.*, 73, 1335–1349, doi:10.1175/JAS-D-15-0149.1.
- Allen, S.J. & Vincent R. A. (1995). Gravity wave activity in the lower atmosphere:
- 247 Seasonal and latitudinal variations, J. Geophys. Res., 100(D1), 1327–1350,
- 248 doi:10.1029/94JD02688.
- 249 Bühler, O. & Mcintyre, M. (2003). Remote recoil: A new wave-mean interaction effect.
- 250 Journal of Fluid Mechanics, 492, 207–230. doi:10.1017/S0022112003005639
- 251 Butchart, N., Charlton-Perez, A.J., Cionni, I., Hardiman, S.C., Haynes, P.H., Krüger,
- 252 K., et al. (2011). Multimodel climate and variability of the stratosphere, *J. Geophys.*
- 253 Res. Atmos., 116, D05102, doi:10.1029/2010JD014995.

- 254 Chen, C., X. Chu, A. J. McDonald, S. L. Vadas, Z. Yu, W. Fong and X. Lu
- 255 (2013), Inertia-gravity waves in Antarctica: A case study using simultaneous lidar
- and radar measurements at McMurdo/Scott Base (77.8°S, 166.7°E), J. Geophys. Res.
- 257 Atmos., 118, 2794–2808, doi:10.1002/jgrd.50318.
- 258 Duck, T.J., Whiteway, J.A., & Carswell A.I. (2001). The gravity wave-Arctic
- 259 stratospheric vortex interaction, J. Atmos. Sci., 58, 3581–3596, doi:10.1175/1520-
- 260 0469(2001)058<3581:TGWASV>2.0.CO;2.
- 261 Dunkerton, T.J. (1984), Inertia–gravity waves in the stratosphere. J. Atmos.
- 262 *Sci.*, 41, 3396–3404, doi:10.1175/1520 0469(1984)041<3396:IWITS>2.0.CO;2.
- 263 Ehard, B., Kaifler, B., Andreas, D., Preusse, P., Kaifler, N., Eckermann, S. D.,
- Bramberger, M., et al. (2017). Horizontal propagation of large-amplitude mountain
- waves into the polar night jet, J. Geophys. Res. Atmos., 122, 1423–1436,
- doi:10.1002/2016JD025621.
- 267 Garcia, R. R., Smith, A. K., Kinnison, D. E., Murphy, D. J., & de la Cámara, Á. (2017).
- 268 Modification of the gravity wave parameterization in the whole atmosphere

- 269 community climate model: Motivation and results, J. Atmos. Sci., 74(1), 275–291,
- 270 doi:10.1175/JAS-D-16-0104.1.
- 271 Gardner, C. S., and M. J. Taylor (1998), Observational limits for lidar, radar, and
- airglow imager measurements of gravity wave parameters, J. Geophys.
- 273 Res., 103(D6), 6427–6437, doi:<u>10.1029/97JD03378</u>.
- 274 Geller, M.A., Alexander, M.J., Love, P.T., Bacmeister, J., Hertzog, A., Manzini, E, et
- al. (2013). A comparison between gravity wave momentum fluxes in observations
- and climate models, J. Atmos. Sci., 26, 6383–6405, doi:10.1175/JCLI-D-12-00545.1
- 277 Hertzog, A., Plougonven, R., & Alexander, M.J. (2012). On the intermittency of gravity
- wave momentum flux in the stratosphere. J. Atmos. Sci., 69, 3433–3448,
- doi:10.1175/JAS-D-12-09.1
- 280 Hitchman, M. H., Gille, J.C., Rodgers, C. D., & Brasseur, G. (1989). The separated
- 281 polar winter stratopause: A gravity wave driven climatological feature, J. Atmos. Sci.,
- 46, 410–422.

- 283 Holton, J. R. (1983). The influence of gravity wave breaking on the general circulation
- 284 of the middle atmosphere, J. Atmos. Sci., 40(10), 2497–2507, doi:10.1175/1520-
- 285 0469(1983)040<2497:TIOGWB>2.0.CO;2
- 286 Kaifler, B., Lübken, F.J., Höffner, R. J., Morris, J., & Viehl, T.P. (2015). Lidar
- 287 observations of gravity wave activity in the middle atmosphere over Davis (69°S,
- 288 78°E), Antarctica, J. Geophys. Res. Atmos., 120, 4506–4521,
- 289 doi:10.1002/2014JD022879
- 290 Kalisch, S., Preusse, P., Ern, M., Eckermann, S. D., & Riese, M. (2014). Differences in
- 291 gravity wave drag between realistic oblique and assumed vertical propagation, J.
- 292 Geophys. Res. Atmos., 119, 10,081–10,099, doi:10.1002/2014JD021779.
- 293 Kogure, M., Nakamura, T., Ejiri, M. K., Nishiyama, T., Tomikawa, Y., Tsutsumi, M., et
- al. (2017). Rayleigh/Raman lidar observations of gravity wave activity from 15 to
- 295 70 km altitude over Syowa (69°S, 40°E), the Antarctic, J. Geophys. Res.
- 296 Atmos., 122, 7869–7880, doi:10.1002/2016JD026360.
- 297 Lindzen, R. S. (1981), Turbulence and stress owing to gravity wave and tidal
- 298 breakdown, J. Geophys. Res., 86(C10), 9707–9714, doi:10.1029/JC086iC10p09707.

299	Liu, A., Tue, J., Au, J., Wang, L., Tuan, W., Russen III, J.M., & Hervig, M.E. (2014).
300	Gravity wave variations in the polar stratosphere and mesosphere from SOFIE/AIM
301	temperature observations, J. Geophys. Res. Atmos., 119, doi:10.1002/2013JD021439.
302	Matsuno, T., (1982), A quasi one-dimensional model of the middle atmosphere
303	circulation interacting with internal gravity waves, J. Meteorol. Soc. Jpn., 60, 215-
304	226, doi:10.2151/jmsj1965.60.1_215.
305	Murphy, D.J., Alexander, S.P., Klekociuk, A.R., Love, P.T., & Vincent R.A. (2014).
306	Radiosonde observations of gravity waves in the lower stratosphere over Davis,
307	Antarctica, J. Geophys. Res. Atmos., 119(21), 11,973-11,996,
308	doi:10.1002/2014JD022448.
309	Nicolls, M. J., R. H. Varney, S. L. Vadas, P. A. Stamus, C. J. Heinselman, R. B.
310	Cosgrove, and M. C. Kelley (2010), Influence of an inertia-gravity wave on
311	mesospheric dynamics: A case study with the Poker Flat Incoherent Scatter Radar, J.
312	Geophys. Res. Atmos., 115, D00N02, doi: 10.1029/2010JD014042.
313	Plougonven, R. & Zhang F. (2014). Internal gravity waves from atmospheric jets and

- Liu X Vue I Xu I Wang I Vuan W Russell III IM & Hervig ME (2014) 200

fronts, Rev. Geophys., 52, 33-76, doi:10.1002/2012RG000419. 314

- 315 Rienecker, M. M., SSuarez, J. M., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., et al.
- 316 (2011). MERRA: NASA's modern-era retrospective analysis for research and
- 317 applications, J. Clim., 24, 3624–3648
- 318 Sato, K. & Yoshiki, M. (2008). Gravity wave generation around the polar vortex in the
- 319 stratosphere revealed by 3-hourly radiosonde observations at Syowa Station, J.
- 320 Atmos. Sci., 65(12), 3719–3735, doi:10.1175/2008JAS2539.1
- 321 Sato, K., Watanabe, S., Kawatani, Y., Tomikawa, Y., Miyazaki, K., & Takahashi,
- 322 M. (2009). On the origins of mesospheric gravity waves, Geophys. Res. Lett., 36,
- 323 L19801, doi:10.1029/2009GL039908.
- 324 Suzuki, H., Nakamura, T., Ejiri, M. K., Abo, M., Kawahara, T.D., Tomikawa, Y., &
- 325 Tsutsumi, M. (2012). A Rayleigh Raman lidar system for troposphere-mesosphere
- 326 observations at Syowa station, Antarctica, Reviewed and Revised Papers Presented at
- 327 the 26th International Laser Radar Conference (ILRC 2012), S9P-18.
- 328 Tsuda, T., Nishida, M., Rocken, C., & Ware, R.H. (2000). A global morphology of
- 329 gravity wave activity in the stratosphere revealed by the GPS occultation data
- 330 (GPS/MET), J. Geophys. Res., 105(D6), 7257–7273, doi:10.1029/1999JD901005.

331	Wilson, R., M. L. Chanin, and A. Hauchecorne (1991), Gravity waves in the middle
332	atmosphere observed by Rayleigh lidar: 1. Case studies, J. Geophys. Res., 96(D3),
333	5153–5167, doi:10.1029/90JD02231.
334	Whiteway, J. A., & Carswell, A. I. (1994). Rayleigh lidar observations of thermal
335	structure and gravity wave activity in the high arctic during a stratospheric warming,
336	J. Atmos. Sci., 51, 3122–3136.
337	Zhang, F. (2004), Generation of mesoscale gravity waves in the upper-tropospheric jet-
338	front systems, J. Atmos. Sci., 61, pp. 440-457, doi:10.1175/1520-
339	0469(2004)061<0440:GOMGWI>2.0.CO;2
340	Zhao, J., C., Chu, Chen, C., Lu, X., Fong, W., Yu, Z., et al. (2017). Lidar observations
341	of stratospheric gravity waves from 2011 to 2015 at McMurdo (77.84°S, 166.69°E),
342	Antarctica: 1. Vertical wavelengths, periods, and frequency and vertical wave number
343	spectra, J. Geophys. Res., 122, 5041-5062, doi:10.1002/2016JD026368.
344	

Figure 1

- 346 Day-to-day variations of the nightly mean E_p at (a) 40, (b) 50, and (c) 60 km. The
- 347 purple, green, yellow, red, and blue asterisks indicate the E_p values in 2011, 2012,
- 348 2013, 2014, and 2015, respectively. The dashed lines indicate $\overline{E_p}_{winter} \pm \sigma_{winter}$. The
- 349 variations for August are enlarged at (d) 40, (e) 50, and (f) 60 km.
- **Figure 2** 350
- 351 Latitude-altitude sections of the nightly mean zonal wind acquired from MERRA in (a)
- August 8–21, 2014 and (b) August 2015. Black and white lines indicate rays of the
- 353 GWs whose vertical wavelength can and cannot be observed by the RR lidar,
- 354 respectively. Arrows indicate the latitude of Syowa.

355 **Figure 3**

- 356 Time-altitude section of meridional wind at Syowa acquired from MERRA. The bars on
- the top indicate the observation time ranges of the RR lidar and a red bar indicates the
- results for August 12, 2014.
- **Figure 4**

- 360 Meridional wind fields acquired from MERRA at 0.5 hPa at (a) 18 UT August 12 and
- 361 (b) 00 UT August 13, 2014. The red star represents the location of the Syowa Station.