
ドームふじの大型望遠鏡架台設営に関する検討

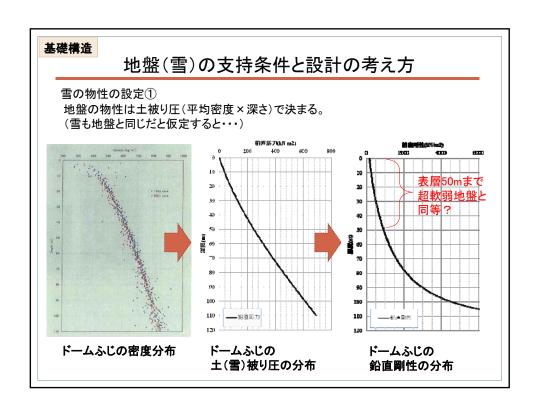
株式会社 竹中工務店 技術研究所 太田 義弘

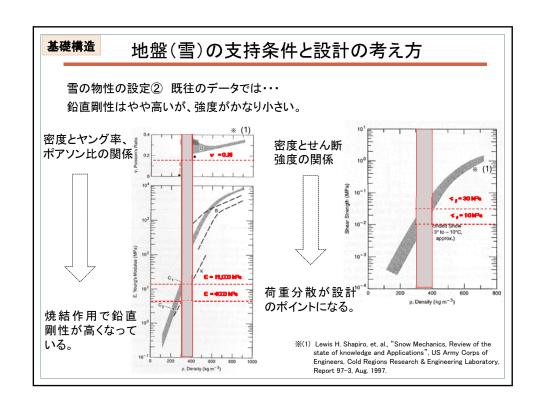
本多 剛、岡崎 智仁、櫛部 敦道、大野 定俊

	ドーム	ふし	およ	<u> </u>	-스(このま	マワラ	斧件		
項目	単位	F−∆C			ドームふじ			【参考】 昭和基地		
項日		夏季	中間季	冬季	夏季	中間季	冬季	夏季 1月	中間季	冬季 8月
最高気温	(°C)	ドームふじ と同程度			-18. 9	-43	-50	1.5	-8. 4	-18. 1
平均気温	(°C)				-35	-59	-66	-1.2	-10.7	-22. 2
最低気温	(°C)				-50	-73	-79.7	-3.9	-13.7	-27. 0
氷温 (GL-約5m)	(°C)	· –	_	_	-40	· —	_	_	_	v —
瞬間最大風速	(m/sec)	· —	1_	_	-	- 1	_	24. 1	35.0	43.5
最大風速	(m/sec)	_	_	_	6.3	11.2	11.2	20.1	28. 3	33.5
平均風速	(m/sec)	3. 0	_	_	4. 0	6. 5	7.0	3.5	9.0	7.3
風向	(-)	, 1 - 1	_	_	·	_	_	北東	北東	北東
合計降雪量	(cm)	_	_	_	_	_	_	27	30	39
最深積雪量	(cm)	_	, <u>—</u>	_				102	87	128
平均気圧	(atm)	約0.6			0.58	0.56	0.55	1.00	1.00	1.00
緯度	南緯	75度06分			77度19分01秒			69度00分22秒		
経度	東経	123度20分			39度45分12秒			39度35分24秒		
標高	(m)	3250			3800			29. 18		
気圧高度	(m)				4500			_		

望遠鏡等架台に求められる性能と課題

- 1. 設置場所(ドームふじの場合): 昭和基地から南西に約1000km、標高約3780m。 設置場所の地盤は雪
- 2. 望遠鏡について: パラボラ直径10~12m、重さ100~140トン (将来は更に大型化)


設置面は6角形 直径5~6m 望遠鏡は低温用鋼材を使用。(-80°C 対応)

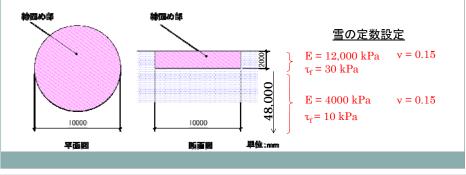

3. 望遠鏡基礎について 望遠鏡使用期間 20年 最低10年 雪だまりを防ぐ必要がある 基礎部にも厳しい精度(鉛直変位)が求められる (特に望遠鏡稼働中の安定性が求められる) 地盤(二雪面)の支持物性値は不明確 不同沈下補正が求められる

架台の設計や施工における課題

項目	課題
地盤(雪面)	・重量物を長期に安定して支持できる地盤とはいえない。 ・地盤(雪面)の補強や沈下対策技術が未確立 ・沈下予測技術も未確立(物理的特性 v.s. 時間・温度)
上部構造	・高い精度が求められる (観測機器の運転時) 施工精度、ジャッキアップ時の精度の確保 地盤(雪面)に伝わる動的荷重の影響
欠溜り対策	・風による吹き溜まり対策が必要 (高床式、ジャッキアップ ⇔ ジョブ構造性能 の両立)
材料	・極低温鋼の建設用鋼材がない。非常に高価になる。
施工	・輸送への配慮が必要 ・建設期間、建設機械が限られる

基礎構造

地盤(雪)の支持条件と設計の考え方


<u>設計条件</u>

建物荷重 W:1652kN

検討深度 H: 地表~50mの深さまでを影響範囲として考える。

目標性能(仕様)

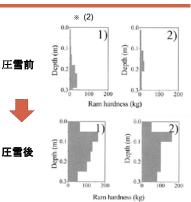
- ① 締固め部直下の鉛直荷重度を20kN/m²程度
- ② 締固め部のパンチング破壊を防止
- ③ 沈下量を50mm以内
- → 締固め部は直径10m、深さ2mとする。

基礎構造

地盤(雪)の支持条件と設計の考え方

基礎の即時沈下量

→ 最大41 mm (平均32 mm)


※一般の建物の場合、即時沈下量 は最大50mmが限界

多層地盤上の円形基礎の沈下量											
	Total										
	Settlement										
	(mm)	1st layer		2nd layer		3rd layer		4th layer		5th layer	
荷重度, q (kN/m²)		21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0
ヤング率, E (kN/m²)		12,000	12,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
ポアソン比、٧		0.3	0.3	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
半径, a (m)		5	5	5	5	5	5	5	5	5	5
深さ, z(m)		0	2	2	10	10	20	20	30	30	50
係数, I=z/a		0.000	0.400	0.400	2.000	2.000	4.000	4.000	6.000	6.000	10.000
Is		1.00	0.86	0.82	0.36	0.36	0.19	0.19	0.13	0.13	0.08
中心部沈下量	40.63										
沈下量, Dz(mm)		15.95	13.66	42.40	18.52	18.52	9.94	9.94	6.72	6.72	4.06
相対沈下量, Sz(mm)			2.29		23.88		8.58		3.22		2.66
平均沈下量(剛体)	31.89										
沈下量, Dz(mm)		12.52	10.73	33.29	14.54	14.54	7.80	7.80	5.28	5.28	3.19
相対沈下量 Sz(mm)			1.80		18.75		6.73		2.52		2.09

基礎構造

地盤(雪面)の課題と検討事項

- 1) 雪面の締固め/補強について
- ・圧雪により強度増加が期待される。
- ・人力による圧雪では効果は表層部のみ
- ・対応策については実証的な検討が重要
- 2) 構造物の沈下量の変化のモニタリング
 - ・軟弱地盤上の構造物では長期に沈下量を 計測している

圧雪後のラム強度の変化

※(2) 金高義、沖田博文、市川隆、M.C.B. Ashley、「南極 ドームふじにおける9m天文観測架台の圧雪基礎造成と不動変位観測」、第29回寒地技術シンポジウム、pp.74-78、2013.11.

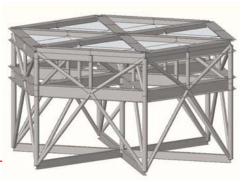
上部構造

観測用架台部構造の設計の考え方

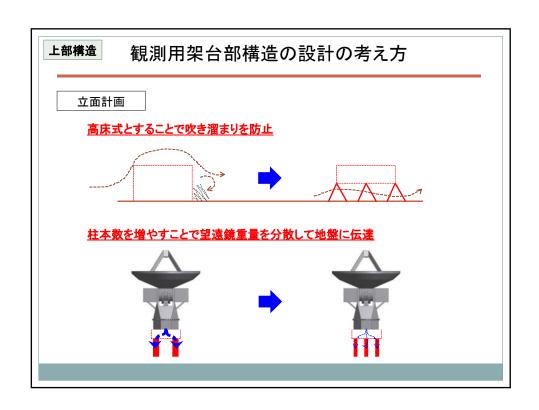
上部架台の例

観測への影響・精度の確保

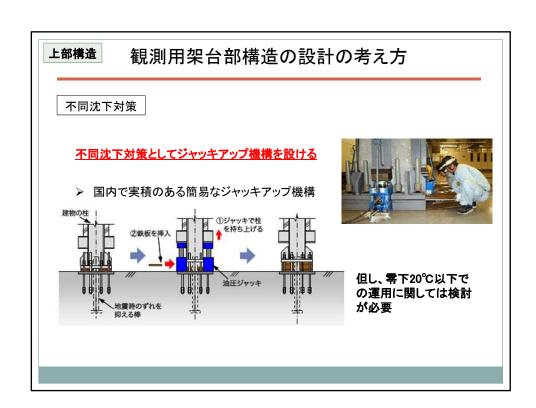
▶ トラス架構による高剛性架構


不同沈下対策

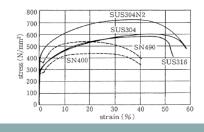
▶ ジャッキアップ機構

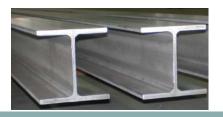

日射による温度変化対策

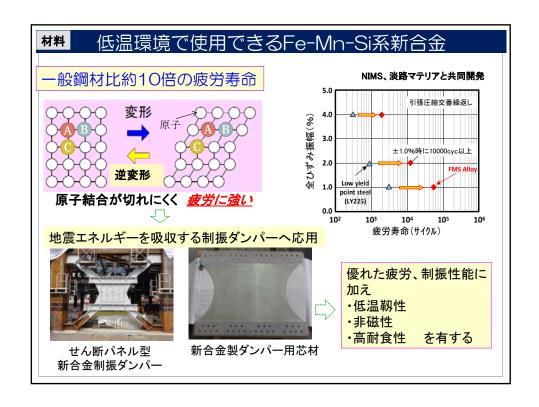
▶ 断熱材による構造体・部材のカバー

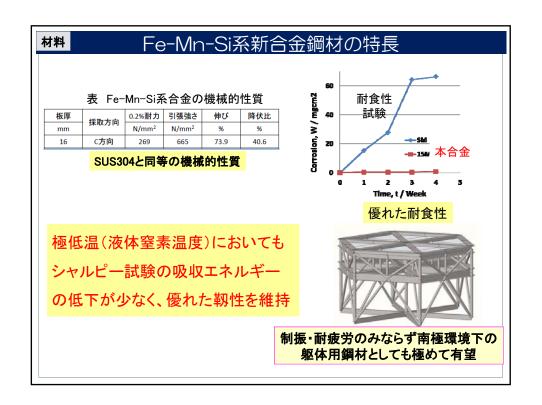

(雪だまり対策の効果を相殺する可能性が 高いので十分な配慮が必要)

※断熱用カバー材は省略




材料


極低温下で使用可能な架台用材料について


使用材料の検討

	一般建築での使用実績	極低温下での耐久性・耐候性	コスト
一般炭素鋼	0	×	0
極低温鋼	Δ	0	×
CFRP	×	Δ	×
ステンレス鋼	0	0	0

御清聴ありがとうございました。

END

謝辞 筑波大学、中井直正教授、久野成夫教授には、南極天体望 遠鏡計画や発表内容について貴重な情報提供やご指導を 頂きました。ここに記して謝意を表します。