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The spherical harmonic expansion is a popular mathemat-
ical tool in geodesy and geophysics. This is because its
basis functions termed the spherical harmonics satisfy the
Laplace equation, and therefore, they are suitable in ex-
panding the geopotential and geomagnetic potential uni-
formly. Also, the spherical harmonics are proper basis
functions to express any kind of analytical function de-
fined on a unit surface such as the topographic height even
if it does not satisfy the Laplace equation.

However, the spherical harmonic expansion has a fa-
tal defect: the polar singularity. This is a pure mathe-
matical issue, and therefore, difficult to be resolved. For
example, it makes a serious damage in numerically inte-
grating the orbits of artificial satellites passing over the
polar regions. Furthermore, it causes a numerical trouble
in the computation of the associated Legendre functions
of high degree/order, especially near the poles. Refer to
Fig. 1. In order to bypass this essential difficulties, we
consider moving the polar singularity of arbitrary spheri-
cal harmonic expansion to a point on the equator.

For this purpose, by following the approach we adopted
in obtaining new type of canonical elements of the orbital
and rotational motions (Fukushima, 1994), we recently
established a procedure to rotate the expansion around the
y-axis by 90 degrees such that the x-axis becomes a new
pole (Fukushima, 2017).

The rotation is conducted by multiplying a matrix com-
posed by special values of Wigner d-function (Wigner
1931) with a few normalization constants obtained by
simplifying the general results of Aubert (2013). Also, we
utilized the symmetry relation of the matrix components
(Edmonds, 1957) and the newly discovered decomposi-

tion of the matrix multiplication into 6 cases depending
on the value and parity of the matrix indices.

Notice that the obtained transformation matrix is un-
changed whether the coefficients are 4π fully-normalized
(Heiskanen and Moritz, 1967) or Schmidt quasi-
normalized (Winch et al., 2005). Therefore, the devel-
oped approach is applicable both to the geopotential usu-
ally following the full normalization and the geomag-
netic potential typically normalized by the Schmidt quasi-
normalization.

We compute the matrix components by a set of re-
currence formulas. The overflow/underflow problems
encountered during the recursive computation of the d-
functions are effectively resolved by using the so-called
X-number formulation (Fukushima, 2012a, 2012b, 2014).

As an example, we obtained the EGM2008R, a set
of 2,190× 2,190 coefficients of the rectangular rotated
spherical harmonic expansion of the latest geopotential
model, the EGM2008 (Pavlis et al., 2012). We confirmed
the 18 digit coincidence of the computed geopotential be-
fore and after the rotation as seen in Fig. 2.

At any rate, in computing the geopotential accu-
rately, one can switch between the EGM2008 and the
EGM2008R depending on the absolute latitude whether
being less than 45 degrees or not. Such a proper com-
bination of the original and the rotated expansions will
be useful in integrating the polar orbits of artificial satel-
lites precisely, and synthesizing/analyzing the gravita-
tional/geomagnetic potentials and their derivatives accu-
rately in the high latitude regions including the arctic and
antarctic area.

The full paper on the present issue was already pub-
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Figure 1: Maximum computation error of the 4π fully-
normalized associate Legendre functions.

lished (Fukushima, 2017). The PDF file of its reprint and
the coefficient file of the EGM2008R are freely available
from the following WEB site.

https://www.researchgate.net/profile/Toshio Fukushima/
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Figure 2: Colatitude dependence of the difference in the
geopotential values between EGM2008 and EGM2008R.

2012b.
Fukushima, T., Numerical computation of spherical

harmonics of arbitrary degree and order by extending ex-
ponent of floating point numbers: III integrals. Comp.
Geosci., 63, 17-21, 2014.

Fukushima, T., Rectangular rotation of spherical har-
monic expansion of arbitrary high degree and order. J.
Geodesy, 91, 995-1011, 2017.

Heiskanen, W. A., and Moritz, H., Physical Geodesy.
Freeman, San Francisco, 1967.

Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor,
J. K., The development and evaluation of the Earth gravi-
tational model 2008 (EGM2008). J. Geophys. Res., 117,
B04406, 2012.

Wigner, E. P., Gruppentheorie und ihre Anwendungen
auf die Quantenmechanik der Atomspektren. Vieweg Ver-
lag, Braunschweig, 1931.

Winch, D. E., Ivers, D. J., Turner, J. P. R., and Stening,
R. J., Geomangetism and Schmidt quasi-normalization.
Geophys. J. Int., 160, 487-504, 2005.

2


