Vertical profiles and temporal variations of greenhouse gases in the stratosphere over Syowa Station, Antarctica

Daisuke Goto^{1, 2}, Shinji Morimoto³, Shuji Aoki³, Satoshi Sugawara⁴, Shigeyuki Ishidoya⁵, Yoichi Inai³, Sakae Toyoda⁶,

Hideyuki Honda⁷, Gen Hashida¹, Takashi Yamanouchi¹, and Takakiyo Nakazawa³

¹National Institute of Polar Research (NIPR), Tachikawa, Japan

²Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), Tachikawa, Japan

³Center for Atmospheric and Oceanic Studies, Tohoku University, Sendai, Japan

⁴Miyagi University of Education, Sendai, Japan

⁵National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

⁶Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of

Technology, Yokohama, Japan

⁷Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Japan

To understand the vertical distributions and temporal variations in CO₂, CH₄, N₂O, and SF₆ mole fractions in the Antarctic stratosphere, we collected air samples over Syowa Station in the austral summers of 1997/98, 2003/04, 2007/08, and 2012/13 using balloon-borne cryogenic air samplers (Honda et al. 1996) and newly developed compact cryogenic air samplers (J-T sampler) (Morimoto et al., 2009). Each air sampler was launched using a scientific plastic balloon, and landed on the sea ice using a parachute after collecting the stratospheric air at assigned altitudes between 10 and 30 km. After recovering the samplers, the respective constituents of air samples were analyzed. The vertical profiles of CO_2 and SF_6 mole fractions showed high values in the lower stratosphere, decreasing gradually with altitude, and then becoming almost constant at altitudes above 18 km. Stratospheric CO₂ and SF₆ over Antarctica increased secularly at respective average rates of 1.82 ± 0.31 ppm yr⁻¹ and 0.26 ± 0.01 ppt yr⁻¹ during the study period, but were delayed a few years compared to the troposphere. By comparing the average mole fractions of CO_2 and SF_6 above 18 km over Syowa with tropospheric data from Mauna Loa, the lag time in secular increase was estimated as 4.5 ± 0.5 years for CO₂ and 5.6 ± 0.2 years for SF₆. These results indicate that the stratospheric air over Syowa was older by about 4–6 years than the tropical tropospheric air. The CH₄ and N₂O mole fractions decreased with increasing altitude due to chemical reactions and photodissociation in the stratosphere, and a compact positive correlation between CH₄ and N₂O was found in their vertical profiles. By taking into account the N₂O depletion during transport of air from the tropical troposphere to the Antarctic stratosphere, the secular increase in stratospheric CH_4 was detected from measured values.

References

Honda, H., S. Aoki, T. Nakazawa, S. Morimoto, and N. Yajima, Cryogenic air sampling system for measurements of the concentrations of stratospheric trace gases and their isotopic ratios over Antarctica, *J. Geomagn. Geoelectr.*, **48**, 1145–1155. doi:10.5636/jgg.48.1145, 1996.

Morimoto, S., T. Yamanouchi, H. Honda, I. Iijima, T. Yoshida, S. Aoki, T. Nakazawa, S. Ishidoya, and S. Sugawara, A New Compact Cryogenic Air Sampler and Its Application in Stratospheric Greenhouse Gas Observation at Syowa Station, Antarctica. *J. Atmos. Oceanic Technol.*, **26**, 2182–2191, doi: 10.1175/2009JTECHA1283.1, 2009.