Predictability of Arctic Cyclones in medium-range ensemble forecasts

A. Yamagami^{1*}, M. Matsueda^{1,2}, and H.L. Tanaka¹

¹Center for Computational Sciences, University of Tsukuba, Japan ²Department of Physics, University of Oxford, Oxford, UK

Arctic cyclones (ACs) have environmental and social impacts on the Arctic [Inoue and Hori (2011, *SOLA*), Eguíluz et al. (2016, *Sci. rep.*)]. In this study, we assessed the forecast performance of medium-range ensemble forecasts provided by The Interactive Grand Global Ensemble (TIGGE), regarding the central pressure and position of ACs for the summer (June – August) of 2008 – 2016. Forecast data from five leading numerical weather prediction (NWP) centers were used: the Canadian Meteorological Center (CMC), the European Centre for Medium-range Weather Forecasts (ECMWF), the Japan Meteorological Agency (JMA), the US National Centers for Environmental Prediction (NCEP), and the UK Meteorological Office (UKMO). Ten dominant AC events were detected based on the following criteria: the central pressure of < 980 hPa, the central position of > 70°N, and the areal-mean temperature anomaly at 250 hPa of > 5 K.

In predicting the central pressure of the ACs, the CMC and ECMWF have higher performance than the other NWP centers throughout the entire lead time (Fig. 1a). Their 2.5-day forecasts are as accurate as the 1.5-day JMA and UKMO forecasts. In the 0.5-day forecasts, all the NWP centers except for NCEP have the mean pressure errors of ~ 2 hPa. The NCEP forecast in the range from 0.5 to 3.5 days ahead shows the lowest skill in predicting the central pressure. Their pressure error for forecasts initialized 0.5 days before the cyclone mature stage is about 4 hPa. Regarding the central position of the ACs (Fig. 1b), ECMWF has the highest skill for the 1.5- to 6.5-day forecasts. The ECMWF forecast in the range from 1.5 to 5.5 days ahead shows the 1-day advantage in predicting the central position of the ACs, as well as the central pressure, compared with the other centers. In the 0.5-day forecasts, the mean positin error is below 100 km for all the centers and JMA shows the lowest mean error of 15 km. In general, ECMWF has the highest peformance in predicting ACs at medium-range timescale.

Figure 1. Mean forecast errors in the central (a) pressure and (b) position of ACs in the summer of 2008 – 2016 for CMC, ECMWF, JMA, NCEP, and UKMO ensemble forecasts. The forecasts were verified against their own analysis.