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Rare kornerupine-corundum-plagioclase domains are found at the boundary between an ultramafic lens and the host 

hornblende-gneiss or within a hornblende-gneiss next to a pyroxenite lens in Akarui Point, Lützow-Holm Complex (LHC), 

East Antarctica [1]. The peak metamorphic conditions of ~800-900 oC and ~8-11 kbar have been estimated in Akarui Point [1-

3], under which kornerupine is stable [4]. The domain has high B concentration as suggested by the presence of large 

kornerupine crystals (up to 4 cm in diameter, ~1.9 wt% B2O3) as a major constituting mineral [1]. Because B is highly 

incompatible and its concentration in mafic and ultramafic rocks is generally low, and because abundant ruby corundum 

suggests incorporation of ultramafic rocks as a source of Cr, the domain is likely a product of interaction between a B-bearing 

fluid, ultramafic lenses and the host Hb-gneiss. In order to constrain the source of B-bearing fluid, we determined B isotope 

composition of kornerupine and tourmaline in the kornerupine-corundum-plagioclase domain by in situ SIMS analysis.  

Two kornerupine-corundum-plagioclase domains were analyzed in this study. The kornerupine and coexisting corundum 

(ruby) have inclusions of ‘prograde tourmaline’ that is either a precursor of kornerupine or a contemporaneous product with 

kornerupine under nearly constant P-T conditions during the infiltration of fluid. It is not found as inclusions in biotite and 

plagioclase. Kornerupine is partly retrogressed to secondary minerals of tourmaline, biotite, corundum (sapphire), andalusite 

and magnesite at the rim or along cracks. These may represent retrograde reaction products of kornerupine with a CO2-H2O 

fluid [1].  

The δ11B values [= {(11B/10B)sample/(11B/10B)NIST951 – 1}*1000] of the kornerupine are -11.6 to -7.8 (±0.3-0.5) ‰ [average 

= -9.9 ± 0.9 ‰] for sample AKR2002 and -9.8 to -5.3 (±0.3-0.5) ‰ [average = -8.0 ± 1.2 ‰] for sample TK2002122104. The 

former sample does not accompany any type of tourmaline. The latter sample has prograde and secondary tourmaline; B 

isotope analyses gave δ11B = -2.0 to +0.6 (±0.2-0.3) ‰ [average = -1.3 ± 0.9 ‰] for the prograde tourmaline and δ11B = -4.6 to 

-3.7 (±0.2-0.3) ‰ [average = -4.1 ± 0.4 ‰] for the secondary tourmaline. The δ11B values of kornerupine are lower than 

tourmaline in the sstudied samples, which is consistent with results from granulite facies paragneisses from Larsemann Hills 

[5]. In [5], measured distribution of B isotopes Δ11BTur-Prs = δ11BTur - δ11BPrs = +5.0 (±1.4) ‰ is proposed to represent isotopic 

equilibrium between tourmaline and prismatine (kornerupine). Ab initio calculation following the method developed by [6] and 

[7] at 1000 K gives a B isotope fractionation factor of +6.4 ‰ [5]. Based on these criteria, kornerupine and prograde 

tourmaline in sample TK2002122104 (Δ11BTur-Krn = -6.7 ± 1.5 ‰) are interpreted as isotopically in equilibrium. This supports 

the interpretation that the kornerupine and prograde tourmaline in sample TK2002122104 are contemporaneous products 

during B-bearing fluid infiltration. Since kornerupine stability requires high-T than 700 oC [4], B isotopic fractionation 

between fluid and the prograde tourmaline was almost negligible [8]. Therefore, B isotope composition of the prograde 

tourmaline represents that of the B-bearing fluid.  

The value of δ11B = -1.3 ± 0.9 ‰ is significantly lower than the sea water value. Alternatively, this value is similar to 

MORB, mantle rocks and blackwall tourmaline formed at contacts between ultramafic (serpentinite–peridotite) and crustal 

(mafic or felsic) rocks [e.g. 9, 10]. Indeed, mode of occurrence of the kornerupine-corundum-plagioclase domains is similar to 

blackwalls found in high-P metamorphic terranes. The domain would represent a high-T type of blackwall or metamorphosed 

blackwall. Therefore, fluids related to the oceanic plate subduction is a potential source of B-bearing fluid to form the 

kornerupine-corundum-plagioclase domain.   
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