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Abstract: MHD equations in the dipolar coordinates are analyzed for an 

idealized model in which the earth surface is assumed to be a perfect conductor. 

For the case of standing resonance waves, i.e., the guided toroidal and the guided 

poloidal waves, the eigenperiods are determined mainly by the mass density near the 

equatorial plane in the magnetosphere. The eigenperiods of the standing waves 

importantly depend on the mass density of the heavy ions outside the plasmapause. 

The resonance oscillations are expected to occur only on a field line having £

values within a narrow range, since a displacement of MHD fluid in the equatorial 

plane is of the order of 0.1 RE for a perturbed electric field ,.., 2 m V /m near L = 1 O. 

The relation of the electric field wave amplitude (oE) of the standing oscillation to 

the displacement (oi;8q) is represented by loEl =B0L- 3 ·oi;8q near the magnetic 

equator. The magnetic perturbation fields of the standing oscillations in the equa

torial plane are one order smaller than those in the ionosphere for a case of perfect 

reflection. The conditions of the coupling oscillations of an Alfven wave and a 

compressional wave are theoretically discussed for the special case of highly asym

metric modes. 

1. Introduction 

In situ observations have recently revealed the existence of various modes of day
time Pc 3-5 magnetic pulsations in the geomagnetosphere (cf the reviews of ARTHUR 
et al., 1977; KOKUBUN, 1980; HUGHES, 1980). Most of Pc 3-5 pulsations in the magne
tosphere can be classified into the two type, i. e., the transverse and the compressional 
modes. A part of the transverse waves, e. g., azimuthal Pc 5 pulsations in the morning 
sector, can be explained by a standing Alfven wave resonance of the earth's magnetic 
field lines based on the idea of a resonance coupling between a shear Alfven wave and a 
surface wave at the magnetopause (CHEN and HASEGAWA, 1974a, b; LANZEROTTI and 
FUKUNISHI, 1974; SOUTHWOOD, 1974, 1975, 1977; KOKUBUN et al., 1976; TAMAO, 1965; 
SINGER and KIVELSON, 1979). On the other hand, satellite-ground correlations of Pc 4-
5 pulsations have been reported that the correlations with ground observations near the 
subsatellite point existed only when the satellite was near the same L-shell and within a 
few hours (PATEL, 1965; BARFIELD et al., 1971, 1972; HEDGECOCK, 1976; KOKUBUN 
et al., 1976; SINGER and KIVELSON, 1979). KOKUBUN (1980) also noted an interesting 
tendency that azimuthally polarized transverse Pc 5 in space is better correlated with 
ground events than the compressional Pc 5. The existence of various modes of day
time pulsations in the magnetosphere excited by the solar wind energy implies that there 
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should be various propagation mechanisms of input fluctuations from the solar wind. 
Then, the study of the standing oscillations of a local field line for the eigenperiods, the 
equatorial extent of the oscillation, the amplitudes of the perturbed magnetic and electric 
fields and the conditions of the coupling resonance, is indispensable to clarify the charac
teristics of the various modes of daytime magnetic pulsations and the transmission mech
anisms of magnetic ULF energies in the geomagnetosphere from the solar wind, and 
to diagnose magnetospheric properties. 

The basic magneto-hydro-dynamic (MHD) equations for the low-frequency have 
been used to derive an equation for the period and amplitude of transverse modes by 
numerous authors as a starting point for examining long-period ULF waves in the 
earth's magnetic field (WESTPHAL and JACOBS, 1962; DUNGEY, 1963; RADOSKI and 
CAROVILLANO, 1966; CUMMINGS et al., 1969; ORR and MATTHEW, 1971; RADOSKI, 
1974). The hydromagnetic wave theory was first applied to the magnetosphere by 
DUNGEY (1954), who restricted consideration to axisymmetric waves, with particular 
reference to the situation in a dipolar field. He showed the two basic solutions of the 
axisymmetric wave equation, later known as the toroidal and poloidal oscillations which 
in general will be coupled in a non-uniform magnetic field, but the coupled equations 
have not been solved analytically (LANZEROTTI and SouTHWOOD, 1979). The toroidal 
mode is also known as a transverse, torsional or azimuthal Alfven wave, and the 
poloidal as a radial and compressional or fast magnetosonic wave. In contrast to the 
axisymmetric case, DUNGEY (1963) and RADOSKI (1967) introduced a guided poloidal 
mode in a highly asymmetric case, where the azimuthal wave number is large and the 
toroidal field becomes small. 

CUMMINGS et al. (1969) numerically determined the eigenfrequencies for the guided 
toroidal and poloidal modes on a field line at 6.6 RE for a plasma distribution along the 
field line given by n=no(ro/r)r, where r varies from Oto 6, no is the proton number den
sity at r0, the geocentric distance to the equatorial crossing point of the field line. This 
approximation was also used successfully by ORR and MATTHEW (1971) to give a quanti
tative explanation of the latitude dependence of Pc 3-4 pulsation period at mid-lati
tudes ( <60°). WARNER and ORR (1979) used the MEAD and FAIRFIELD (1975) magnetic 
field model and solved for wave periods by using the time of flight approximation 
(OBAYASHI and JACOBS, 1958), i. e., the WKB approximation, to the toroidal wave equa
tion for different tilt angles and Kp conditions. But the WKB approximation is not 
valid when the wave length of the oscillation is comparable to the scale size of the system, 
and is particularly poor for the fundamental mode oscillation of a field line (MIURA 

et al., 1982), which will be represented in Section 2. SINGER et al. (1981) examined the 
effect on eigenfrequencies of only the field geometry and the diurnal variations of the 
eigenfrequencies, using the recent Olson-Pfitzer magnetospheric magnetic field model, 
by keeping density constant along all field lines. 

The present numerical study extends and reconfirms the previous papers by CUM
MINGS et al. (1969) and ORR and MATTHEW (1971) in three ways. First, additional ef
fects of plasma density distribution and heavy ions outside the plasmapause on the 
eigenfrequencies are analyzed by using OG0-5 plasma density profile (CHAPPELL, 
1972), which are useful to examine the L-value dependence of the observed pulsation 
periods. Second, relations between the perturbation fields at the earth surface and the 
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equatorial extends of the resonance field line oscillation are examined to clarify the 
satellite-ground correlations. Finally, the special solution of the coupling oscillations 
between an Alfven wave and a compressional wave will be theoretically discussed for 
the limiting case of highly asymmetric modes near the magnetic equator. 

2. Eigenperiod of Alfven Resonance Oscillation 

Incompressible perturbations are analyzed in this section, because we are interst
ed in the oscillation of the local field line, which is possible only in the guided waves. 
For the guided waves with a time dependence of the form e-Iwt in which the Poynting 
vector is alway along the field line, eqs. (A9.l-A9.2) are no longer coupled. We obtain 
the guided toroidal and the guided poloidal wave equations (RADOSKI, 1967) as the 
following forms; 

(1.1) 
and 

(1.2) 

respectively. Equation (1.1) indicates the axially symmetric toroidal mode with 
torsional oscillations (b"') of an entire magnetic shell. Eigenmodes of the transverse 
Alfven waves with wavelengths comparable to the background magnetic field lines 
have eigenfrequencies that are different for different shells. The guided poloidal 
mode with eq. (I .2) corresponds to the limiting case, where large azimuthal wave num
ber m�l, with magnetic oscillations in a meridian plane (b,,) and represents incom
pressible perturbation of the entire magnetosphere. These eqs. (I .1-1.2) are in 
agreement with the previous results (DUNGEY, 1967; RADOSKI, 1967; CUMMINGS et 

al., 1969; ORR, 1973). 
Equations (1.1-1.2) of the guided toroidal and the guided poloidal modes can be 

rewritten as, 
(2.1) 

and 

respectively, where z=cos fJ, BE =B0/L3; the field strength at rE, and rE =LRE; the 
geocentric distance to the equatorial crossing point of the field line at L. In subsequent 
calculations, the eigenfrequencies of the guided toroidal and poloidal modes depend 
on the model of the number density distribution n0 (r,fJ). The plasma density no(L) on 
the equatorial plane in the dayside magnetosphere is given by a smoothed profile de
duced from Ogo 5 spectrometer measurements as shown in Fig. 1 (CHAPPELL, 1972). 
CUMMINGS et al. (1969) and ORR and MATTHEW (1971) numerically determined the eigen
frequencies for a plasma distribution along the field line given by n=n0(rEfr)'"" (an 
isospherical model), where the density index m varies from O to 6, n0 is a proton number 
density at rE, and r is a geocentric distance to the position of interset on the field line. 
We numerically solved the eq. (2) for the gyrofrequency model of the plasma distribu
tion along the field line given by, 
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Fig. la. The observed plasma density on the 
equatorial plane in the dayside 
magnetosphere ( CHAPPELL, 1972). 
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10-I �--------� Fig. lb. A smoothed profile of the plasma den
sity deduced from Ogo 5 spectrom
eter measurements, as a function 
of the L-value. 
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n=no(L)·(1+3 cos2 8)1!2 sin-0 (}ocB, (3) 

where Bis a background magnetic field and no(L) is a number density at the equatorial 
crossing point of the field line. Recently MIURA et al. (1982) demonstrated that the 
ionospheric boundary conditions, e. g., a finite height-integrated ionospheric conduc
tivity and the steady electric field in the ionosphere, are important for electrodynamics 
in the ionosphere-magnetosphere coupling system. The eigenfrequency and damping 
(growth) rate of the eigen oscillations of the shear Alfven wave are hardly dependent on 
the conditions in the daytime, although the perturbation fields are strongly dependent 
on those. Using the boundary condition that X, = X9 =0 at z= ± cos 80, i.e., a case 
of perfect reflection at the surface of the earth, the eigenfrequencies of the guided, 
toroidal and poloidal modes in the dayside magnetosphere are computed by means of 
the Runge-Kutta-Gill method. Figures 2a and 2b illustrate the fundamental eigen
periods against the L-value for the gyrofrequency model and the isospherical model 
with m=O, respectively. Zero-order characteristic periods given by "time of flight" 
method (OBAYASHI and JACOBS, 1958) are also illustrated by the broken lines for both 
of the density models. The characteristic period of the oscillating magnetic lines of 
force is given by, 

(4) 

Many workers consider this "time of flight" (WKB) approximation of determining 
the pulsation periods in the magnetosphere. However, the fundamental periods by 
the "time of flight" method are -40% shorter than those of the fully developed decoupl
ed mode theory for the isospherical model, that is consistent with the result of MIURA 
et al. (1982). This result implies that the time of flight approximation is not valid when 
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and Kp"' 1 in the dayside magnetosphere. 
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the wavelength of the oscillation is comparable to the scale size of the system, which has 
a nonuniform magnetic field, such as a dipolar field. The eigenperiods of the guided 
poloidal mode are "'30% longer than those of the guided toroidal modes, because of 
the "resistance" term in the meridional direction, i. e. , second term of eq. (2.2). The 
eigenperiods of the guided toroidal and poloidal modes for the gyrofrequency plasma 
density model are only "' 11 % longer than those of the isospherical plasma density 
model, though the number density for the gyrofrequency model is 102-103 times as large 
as that for the isospherical model near the high-latitude inner magnetosphere. CUM

MINGS et al. (1969) showed that it is the equatorial mass density which is most important 
in determining the eigenperiods of a flux tube. It is confirmed that the eigenperiods are 
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determined mainly by the mass density near the equatorial plane in the magnetosphere. 
Figure 3 indicates the effects of the heavy ions on the eigenperiods of the guided 

toroidal and poloidal modes for the gyrofrequency plasma model in the dayside mag
netosphere. The thin and thick lines as a function of L-value express the eigenperiods 
for the only proton mass density and the total mass density of H+ -, Ht- and o+ -ions 
on the equatorial plane as shown in Fig. 1, respectively. The eigenperiods for any 
other mass density can be obtained by using the relation T=T0·[po(H+ , Ht, 
Q+ )/ p0(H+ )] 112, where T0 is the eigenperiod of the guided mode for the proton mass 
density and p0(H+ , Ht, o+ ) is the observed mass density in unit of cm-3• It is found 
that the eigenperiods importantly depend on the mass density of the heavy ions 
outside the plasmasphere. Therefore, the concentration of the heavy ions outside the 
plasmasphere is diagnosed by the observed periods (Tobs ) of magnetic pulsations, i. e., 
Po(H+ , Ht, Q+ )=po(H+ )·(T0bs/Tor. The first clear observational case of the heavy 
ions being important for a particular pulsation was recently reported by SINGER et 
al. (1979) who used the same formula as quoted in this paper. 

Estimates of wave electric field, field line displacement and ratios of magnetic per
turbations at different points on a field line have been made by NEWTON et al. (1978), 
ALLAN and KNOX (1979a, b, 1982) and WALKER (1980). Once X11 and X1 are numeri
cally determined as a function z, the magnetic perturbation (b1, b,,) and the displace
ment vector (<;1, <;J of the guided modes are obtained from equation (AlO). The 
relations between the perturbations in the dipolar field can be rewritten as the following 
formulas; 
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Fig. 5. Solutions of the toroidal and the poloi
dal wave equations for the gyrofre
quency model at L=lO. The theoreti
cal wave magnetic field at any point 
along the field line are represented as a 
function of the magnetic latitudes. 
The perturbation fields are normalized 

and 

with the reflecting surface of the per
fect conductor (bsur). 
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The amplitudes (Xi- , Xs,), (�¢ , �J and (bs, , b11) of the fundamental modes are plotted 
in Figs. 4 and 5 as functions of magnetic latitude for the gyrofrequency plasma model, 
where the boundary condition is  given by X'(- cos 80) = -X'(+cos 00) at z= ± cos 00• 

The perturbation fields (X, e) and (b) are normalized with the values at the equatorial 
plane (X0q , e eq) and the reflecting surface of the perfect conductor (hsu r), respectively. 
For example, suppose an osci llation observed at the high-latitude in the daytime (L 
- 10) with hs,sur=h11su r= 10 nT amplitude. If the oscillations represent the fundamental 
modes of the standing wave resonance, then X� e q  "' 5. 7 x l 013 [ TL3 ] and X¢e q "' 1. 0 x 106 

[TL2 ] , and the displacement vector should be ; ¢eq "' 450 km, ; i-e q "' 520 km near the equa
torial plane. It is interesting to note that the equatorial extent of the standing wave 
resonance is estimated to be - 0.1  RE for hsur "' 10 nT and L "'  10 in the magnetosphere. 
The amplitude of the wave electric field at any point along the field line can be deter
mined from Figs. 4 and 5 by multiplying the displacement vector by the ambient 
magnetic field B=B0 L-3(1 +3 cos�8) 112 sin-6 8, i.e. , E1 =Bx e and l0Ej=B· ; -B0L-3 • 

o;e q · The peak electric field wave amplitudes of the toroidal and the poloidal modes 
should be E1" "' 1. 4 m V /m and £1"' "' 1.6 m V /m at the equatorial plane for L "'  10 and 
o-;e q - 0.1 RE(b¢sur =h11su r= 10 nT), respectively. 

Figure 6 indicates the amplitudes of the field line displacements ( � 'f " � i,) of the first 
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toroidal and poloidal modes of  standing resonance wave in the equatorial plane. The 
amplitudes are calculated as a function of the £-value for the equatorial electric fields 
Ef,? "' 14 m V /m and E;JI "' 1 6  m V /m, which correspond to the magnetic perturbation 
bsu r= 100 nT in the perfect conducting ionosphere, and the gyrofrequency plasma model 
in the di polar background field. It is noteworthy that the radial extent of the displace
ment is no more than -0.5 RE in the inner magnetosphere, therefore, the coupling 
between field lines should be weak, allowing field lines within the resonance region to 
oscillate independently. Recently, HUGHES et al. ( 1 978) inferred radial extents of the 
resonance region with - 0.25 RE at Pc 3 frequency and - 0.6 RE at Pc 4 frequency, using 
the synchronous satellite ATS 6 and SMS 2, which were separated by -0. 1  RE . The 
first identification of a spatially confined resonance structure was made possible with 
observations from the ISEE-1 and -2 satellites (SINGER et al., 1 979) . SINGER et al. 
( 1982) have examined four dayside Pc 4-5 pulsations, three of which are observed be
tween L=4 and 7 within 1 0° of the magnetospheric equator. The resonant region 
widths of these three events range from "' 0.2 to 1 .6 L shells. These observational 
facts are well consistent with the calculated displacement of the fundamental waves in 
the dipolar background field with the gyrofrequency plasma model. 

The second-harmonic and third-harmonic eigenperiods of the guided toroidal 
mode are illustrated in Fig. 7 against £-value for the gyrofrequency model in the day
side magnetosphere. The higher mode frequency (w2 , w3 , etc.) normalized by the first 
mode frequency w1 of the standing wave, i. e. , a sequence of frequency ratios, is ob
tained as a function of the mode number for the fully developed guided mode theory 
and the time of flight method, respectively (Fig. 8). The fact that the mode frequencies 
w2, ws, etc., given by means of the time of flight method consist of a sequence of har
monics of the lowest mode frequency w 1 is a result of assumption that the field line is 
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Fig. 7. Higher-harmonic eigenperiods of the guided toroidal mode vs. the L-value for the gyro

frequency plasma model at Kp- 1  in the dayside magnetosphere. 
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Fig. 8. Sequences of the frequencies ratio vs. mode numbers. The frequency obtained by the time 

of flight method indicates the harmonic relation. The plots, which present the frequencies of 

"harmonic events" in the Pc 3 range obtained by TAKAHASHI and McPHERRON (1982), 

are nearly in the sequence of the toroidal standing wave in the dipolar ambient field with the 

gyrofrequency plasma model. 

equivalently uniform and flexible. It is reasonable to note that the sequence of fre
quency ratios of the fully developed toroidal wave indicates the slope "'1.3, i. e., the 
mode frequencies for a nonuniform field line such as a dipolar magnetic field line, do 
not form a sequence of harmonics of the fundamental. TAKAHASHI and McPHERRON 
(1 982) demonstrated that at least 10-30% of Pc 3 pulsations observed at synchron
ous orbit by the ATS-6 satellite show several spectral peaks with roughly harmonic 
frequency ratios. The sequence of frequency ratios of the second mode m2 illustrated 
in Figs . 3 and 5 of TAKAHASHI and McPHERRON ( 1 982) is also represented in Fig. 8. 
The observational sequence of the frequencies in the Pc 3 range at ATS-6 (L - 6.6) is 
found to be nearly consistent with the slope of the toroidal standing wave in the di polar 
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background field with the gyrofrequency plasma model. Therefore, the approxima
tions of the di polar ambient field and the gyrofrequency plasma density are concluded 
to be good ones of the plasma parameters in the real inner magnetosphere. We have 
plotted in Figs. 9 and 10 the "second-harmonic" and "third-harmonic" amplitudes of 
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(X11, e¢) and b¢ at L=lO for the gyrofrequency model. In Figs. 9 and 10 we have nor
malized the wave fields to the fundamental values that would be observed in the equa
torial plane {X;!!, ei�t

q) and the reflecting surface of the perfect conductor {bi��r). 
When the oscillations are considered for the second and third harmonic of the standing 
wave resonances, the peak displacement vectors should occur along the field line at 
82nd-90°= ± 19° and Osrd-90°=0° , ±27° ' and should be .;�1�lA X  -0.5 ei!tq and .;!1;2AX 

-0.42 ei�t
q, respectively. Then, the magnetic ,vave amplitudes near the magnetic 

equator should be �0.5 nT at 82nd-90°=0° and Osrd-90°= ± 15° for Efi? "' 1.4 mV/m, 
b¢sur= 10 nT and L= 10. It is noteworthy that the magnetic wave amplitude observed 
at the reflecting surface will be one order larger than the magnetic wave amplitude in 
the equatorial plane for the case of perfect reflection. 

In this section MHD equations are analyzed for an idealized model in which the 
earth surface is assumed to be a perfect conductor. The ambient magnetic field is 
dipole, and the gyrofrequency and the isospherical plasma density models are con
sidered. For the case of standing resonance waves, the guided waves, i. e., the toroidal 
and poloidal wave equations are uncoupled. It is found that the eigenperiods of the 
guided toroidal and poloidal waves are determined mainly by the mass density near the 
equatorial plane in the magnetosphere. The heavy ions outside the plasmasphere have 
an effect on the eigenperiods of the guided toroidal and poloidal modes. The resonance 
oscillations are expected to occur only on field lines having L values within a narrow 
range ( -0.1 RE), so that all the field lines in this range would have approximately the 
same eigenperiod. The magnetic perturbation field observed in the equatorial plane 
will be one order smaller than the magnetic perturbation field near the ionosphere. 
Therefore, the difficulty of the satellite-ground correlations are easily understood. 
Further coordinated researchs are needed with respect to the spatical and temporal 
resolutions of satellite data. 

3. A Special Solution of Coupling Oscillation 

We consider the coupling equations of an Alfven and a fast magnetosonic modes 
in the magnetosphere for a special case. From eq. {A9) we obtain 

and 

where 

(!�,'-) -{ - (_!!_,,_) + 2--L _§_��!'_ =_? __ In( Biz ,,)= 0 B ov h:, h ,u 01,1 a,., · ,  ' 
and in a cold plasma. The right-sides of these equations indicate that the toroidal and 
the poloidal modes are coupling with each other. Though these equations have not 
been exactly solved even in a dipole background field, we can analyze the limiting 
case. Only modes with the same oscillating exponentials on both sides of eq. (7) can 
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exist for a long time in the magnetosphere, since the phase mixing of modes without 
the same time-exponentials should occur and the modes will be damping. Therefore, 
we can readily obtain the indispensable condition of the l ong-lived coupling oscilla
tion given by 

(8) 

In the l imiting case of axJaµ � axJa<jJ ,..., ax/av , from eq. (7), we can obtain a wave 
equation of compressional wave which propagates obliquely to the ambient magnetic 
field as the following form; 

where 

_j__(JJ __ QK_)+ Vl a2r_+(JJ2 Y=O o!J h� o:.i h� o¢2 c omp ' 

Y =(_QX,,_ _  i}_X,;,_ _) =(-h b )  - 0¢ ov !' . , , • 

(9) 

We consider the perturbation fields being harmonics in the azimuthal direction with 
azimuthal wave number m, i.e., Y -e-iwteim¢ . Equation (9) becomes 

(10) 

and can be rewritten as, 

a2 y [2 i) -(I V ) 
2 

J
ay R2 ( W�o mp ,n� ) Y-0 c,L'--+ ai n A - -L oL + E - vc -R[D -- - ' (1 1 )  

in the equatorial plane, where o/ov l o= 9o " = -RED(aJaL). If p(L)=poL-4, we obtain the 
wave equation of compressional wave in the equatorial plane given by 

where 

Note that there are the two separate cases of high and low frequencies (wcomp).  

3. 1 .  An oscillating solution with the high frequency 

(1 2) 

If a2 > m2L-4
, i.e., w � o m p > Vl(L) · (m/LRE )\ we can obtain an oscillating solution 

of the coupling eq. (1 2) as the following form; 

(1 3. 1 )  

with a= 5/2, /?;=a/2 and 1J=±(25+4m2
)

11:;4. The magnetic perturbation field in the 
equatorial plane becomes 

( 1 3.2) 
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where Zi,(fiL") is a modified Bessel function. 
3.2. An evanescent solution with the low frequency 

For w�omp 
< Vl(L) · (m/ LRE)2, the evanescent solution of coupling oscillation is 

given by, 
(14.1) 

and 
bµ= CL-112 • Zii19V) , (14. 2) 

where /.., and K.., are modified Bessel functions of first and second kinds. It is interest
ing to note that the coupling oscillations of the Alfven and the fast magnetosonic waves 
with the high frequency [w�omp

> Vl(L) · (m/LRE)2] and the low one [w�omp
< Vl(L) , 

(ml LRE)2] should be the oscillating and the evanescent modes near the magnetic equa
torial plane for a/aµ<(ajacp -a;a'v, respectively. 

The linear coupling of the guided standing wave and the compressional wave which 
has a k-vector normal to the ambient magnetic field occurs only when the resulting 
dispersion laws are satisfied as the following equation in the magnetosphere, 

(15) 

where k 1 1  and k .1 are mean wave numbers of the compressional waves parallel and 
normal to the ambient magnetic field and Te igen is the eigenperiod of the toroidal mode 
( cf Fig. 2). Therefore, the theory predicts that the linear coupling oscillations of the 
fundamental standing wave and the compressional propagating waves with the real 
larger azimuthal wave number never occur in the magnetosphere, since (2rr/w comp

),;:::;, 
{ VA(m/2rrlORE)}- 1 -20 s <{.. Te 1gen(L - I0) - 400 s for m= I0 and VA

"' 2000 km/s near 
L= I0 and (2rr/wcomp

) -4 s <{.. Te igenCL -4) - 20 s  for m= l O  and vA -4000 km/s near 
L=4 (cf Fig. 2 and Fig. 3). Only the compressional evanescent waves which have a 
imaginary part of k.1(m) can couple with the fundamental standing waves in the magne
tosphere. If the real and imaginary parts of the larger azimuthal wave number of the 
compressional waves are same order and Real (kD=mi ea 1-mrmag

-;::::.O, the condition of the linear resonance oscillation, i.e., eq. (1 5), can be satisfied in the magnetosphere. 
We can obtain the coupling oscillations of the fundamental standing wave and the com
pressional evanescent wave with mRea l ,;:::;,mimag 

and exp [(imRea l -mimag)¢]. The higher harmonic waves (n�2) of the standing oscillation can be coupled with the pro
pagating compressional wave (k:i_ �kD in the outer magnetosphere. 

SOUTHWOOD (1977) discussed localized compressional field line resonance-like 
signals to be possible in a hot inhomogeneous plasma like the magnetospheric ring 
current though as in a cold inhomogeneous plasma the hydromagnetic equations are 
generally coupled. A general requirement is that total pressure (op+Bo · oB1 1/2µ0) 

perpendicular to Bo balances in the wave, i.e., energy flux of the wave does not cross 
B0 • We can distinguish the localized compressional wave from the propagating com
pressional wave, except the trapped oscillation of the fast magnetosonic wave (TAMAO, 
1978), with respect to the energy flux across B0 • 

On the other hand, the propagating compressional wave in the outer magnetosphere 
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can be coupled with the collective eigen oscillation at the plasmapause (CHEN and HASE
GAWA, 1974b) and the fundamental standing oscillation in the plasmatrough by means 
of the nonlinear resonance (YUMOTO and SA ITO, 1982) . The condition of the nonlinear 
resonance is given by 

(16) 

where Wcomp, lv{s and wr are the frequencies of the propagating compressional wave in 
the outer magnetosphere, one component of HM noises near the plasmapause and col
lective eigen oscillation at the plasmapause or the fundamental standing oscillation in 
the plasma trough, respectively. 

In recent times many workers have investigated the azimuthal wave number of 
long-period magnetic pulsations. HUGHES et al. (1978) demonstrated that Pc 3-4 
pulsations at the synchronous orbit are usually coherent over longitude separations of 
up to 20° and have various azimuthal wave numbers (m < 10) .  OLSON and RosTOKER 
(1978) found a relationship of the form m=(l .4± 0. 4)/ + 0.26, where/ is the frequency in 
millihertz and m is the azimuthal wave number of Pc 4-5 magnetic pulsations. Some 
of these Pc 3-4 pulsations with longitudinal localization and larger azimuthal wave 
number at L=6.6 correspond to the linear coupling oscillations of the higher harmonic 
standing waves and the propagating compressional waves. TAKAHASHI and Mc
PHERRON (1982) recently demonstrated that at least 1 0-30% of Pc 3 pulsations at 
synchronous orbit can be statistically classified as harmonic events of many discrete 
harmonic frequencies. Long-period pulsations with small azimuthal wave number 
observed in the magnetosphere correspond to the guided standing oscillations analyzed 
in the previous section. 

4. Summary and Discussions 

In this paper, MHD equations in dipolar coordinates are analyzed for an idealized 
model in which the earth surface is assumed to be a perfect conductor. The dampling 
rates are strongly dependent on the ionospheric conductivity. NEWTON et al. (1978) 
found that a typically normalized damping rate, rf w, is -0.1 for nightside values of 
conductivity and -0.01 for the dayside, i. e. , although the joule dissipation in the 
nightside ionosphere is an important source of damping of pulsation, the damping is 
weak for typical dayside ionosphere (..rp > l012 esu). ALLAN and KNOX (1979a, b, 
1982) found that ionospheric coupling is small compared with magnetospheric coupling 
for any single non-axisymmetric mode; however, ionospherically coupled axisymmetric 
modes should be necessary components of the Fourier sum of modes required to model 
any real pulsation of low to moderate azimuthal wave number. The plasma density in 
the magnetosphere is considered to be the gyrofrequency and the isospherical models. 
The characteristics of the eigen oscillation of a dipolar field line may be summarized 
as follows; 

(I) For the case of standing resonance waves, i.e. , the guided toroidal and the 
guided poloidal waves, the eigenperiods are determined mainly by the mass density 
near equatorial plane in the magnetosphere as shown in Fig. 2. 

(2) The eigenperiods of the standing waves importantly depend on the mass 
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density of the heavy ions outside the plasmasphere (Fig. 3). The eigenperiods for any 
other mass density can be obtain by using the relation T- T0[p0(H+ , Ht, o+)/ p0(H+)]112, 

where To is the eigenperiods of the decoupled mode for the proton mass density and 
po(H+ , Ht, Q+) is the observed mass density in units of cm-3 • 

(3) The resonance oscillations are expected to occur only on field lines having L
values within a narrow range. The equatorial extents of the standing resonance 
waves are estimated to be oeeq

"' VB0 1 · 0Eeq
"' O. l RE for oEeq

"'2 mV/m at L= lO, 
where oe eq 

i s  a displacement of MHD fluid and oEeq 
is an electric perturbation at the 

equatorial plane. The electric field wave amplitudes of the standing waves are esti
mated to be joEl=Be "'BoL-3oeeq

"' 1 .5 mV/m at the equatorial plane for £ ,...,,  IO  and 
oBsur "' I O  nT. 

( 4) The magnetic perturbation fields of the standing resonance waves in the equa
torial plane will be one order smaller than those near the ionosphere for the case of per
fect reflection. 

(5) The compressional evanescent waves, which have a imaginary part of k.1 and 
Real (kl)=m�ea 1-mfmag

�O, and the propagating compressional waves (mrmag
=O) 

can couple with the fundamental standing waves in the magnetosphere by means of 
the linear and the nonlinear resonances, respectively. The propagating compressional 
waves also couple with the higher "harmonic" waves of the standing oscillations in the 
magnetosphere. 

The observational sequence of the frequencies in the Pc 3 range at ATS-6 (L-6.6) 
demonstrated by TAKAHASHI and McPHERRON ( 1982) is  nearly consistent with the slope 
of the frequency ratios of the toroidal standing wave in the dipolar background field 
with the gyrofrequency plasma model (cf Fig. 8). It is concluded that the approxima
tions of the di polar ambient field and the gyrofrequency plasma density model are good 
ones of the realistic inner dayside-magnetosphere (L :$ 7). The comparison between 
the calculated periods of the guided toroidal mode and those of Pc 5 waves having pre
dominant azimuthal polarization in the dawn-side magnetosphere, which was demon
strated by YuMOTO et al. (1983), is presented as a function of L-value in Fig. 1 1 .  

2000 

en 
1000 

I 500 

0 200 
0 
o:: I 00 
w 
CL 50 
z w 
<.9 2 0  
w 

l(pN I , GYROFRE. MODE L 

TOROIDAL 

0 0 <S �·/ " �=· · 
_._. .. 0 

/\£•'. 0 

{ V "h'. DAWN SIDE 
Ce ; OG0-5,  o; ISEE -1) 

5 10 
L-VALUE 

15 

Fig. 11. Comparison between the calculated 
periods of the toroidal mode and those 
of azimuthal Pc 5 in the dawn-side 
magnetosphere. 
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The thick and thin lines indicate the eigenperiods of the toroidal standing oscillations for 
the gyrofrequency plasma models (Fig. 1 )  of heavy ions (H+ , Ht, o+ ) and proton (H+ ), 
respectively. The black and white circles express the Pc 5 periods observed by OG0-5 
and ISEE-1 , respectively. It is  clearly found that the observed periods of daytime 
Pc 5 pulsations in the inner magnetosphere (L< 1 0) are in agreement with the calculated 
periods of the fundamental toroidal waves in the dipolar background field. The dif
ference between the calculated and the observed periods in the outer magnetosphere 
(L> 1 0) reduces to the distortion from a dipole field geometry and the effect of the mass 
density in the outer magnetosphere, which are recently discussed by S INGER et al. (1 981). 

The toroidal periods for Kp "' 3  and Kp "' 7  are also calculated for comparison with 
Pc 3 periods observed by ISEE-1 (MoE et al. , 1 980) inside and near the plasmapause as 
shown in Fig. 1 2. The frequency of the collective eigen mode of the surface wave at 
the plasmapause i s  theoretically given by CHEN and HASEGAWA (1 974b) as follows; 

(1 7) 

where Vl1 i s  the Alfven velocity inside the plasmapause. The value of k 1 1  is decided 
by the length of the field line l, k 1 1 =mr/l with n �  1 .  The observed Pc 3 periods inside 
and near the plasma pause are clearly inconsistent with that (Tee "' 1 40 s for n= 1) of the 
fundamental mode of the collective surface wave at the plasmapause. The higher 
harmonic oscillation of the collective eigen-mode excited by the propagating com
pressional wave at the plasmapause can be explained by the nonlinear resonance theory 
(YUMOTO and SAITO, 1 982). The period of the trapped osci llation in the plasmasphere 
(T AMAO, 1 978) is approximately given by 

(1 8) 

where .:JL is the characteristics length between the two peaks of Alfven velocity and 
Vg.L i s  the group velocity of a fast magnetosonic wave normal to the ambient magnetic 
field .  The period of the trapped oscillation is < 40 s for .:JL-3 RE and Vg.L "' VA "' 
600 km/s. These Pc 3 magnetic pulsations observed by ISEE-1 inside and near the 
plasmapause must be either the higher harmonic wave of the collective modes at the 
plasmapause or the trapped oscillation of the fast magnetosonic wave in the plasma
sphere (and/or other occurrence mechanism). However, observational studies in 
space are needed further for the ground-satellite correlations and the wave characteri
stics of Pc 3 magnetic pulsations. 
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Appendix. MHD Equations in Dipolar Coordinates 

Equation of l ines of force of the dipole field in the spherical coordinates (r, 0, ¢) is 

r=rE sin2 0 , (Al )  

where rE is the equatorial distance of the field line and O is a co-latitude. Now we 
take dipolar coordinates (J.1, µ, ¢), i.e., orthogonal curvilinear coordinates, where It is 
the unit vector in the outward normal in the meridional plane, IIµ the tangential direc
tion to the field line and II1 the westward direction; 
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Fig. Al. An illustration of the orthogonal dipole coordinate system. The curves of constant JJ 

are the dipole field lines and the curves of constant µ are the orthogonal trajectories to 
the field lines. The unit vectors µ and JJ are shown/or three positions. 

J.i = Sin2 0/r , 

µ = cos O/r2 , 

<P=<P . 

(A2.1 ) 

(A2.2) 

(A2.3) 

Thus, J.i is constant on the field line, while lines of µ= constant are equipotential l ine 
(i.e., (/)= -M cos O/r2 with the earth's magnetic dipole moment M as shown in Fig. 
AI ). The matrices of dipolar coordinates are given by, 

and 

h11 =r2(sm O ,vl +3 cos2 0)-1
, 

hµ=r3(I +3  COS2 0)-1/2 ' 

h'P =r sin O .  

The linearized MHD equation is given by 

h= l7 x (E x B) , 

where e is the displacement vector defined by 

ae;at=v ' 

(A3.I ) 

(A3.2) 

(A3.3)  

(A4) 

(A5) 

(A6) 

and v is the perturbed flu id velocity. In eq. (A4), Pom and Pi are mass density and 
the perturbed plasma pressure. The perturbed fields in the di polar coordinates become; 
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+( � abjaµ- bµB/h11hµ·ah,,/av) J ,  
1 Poma2

�1Jat2 = - 7
1- ap ifaµ , 

fl 

(A7.1) 

(A7.2) 

1 Poma2
� ¢/at2 = - h<P a(p1 +bµB/ µo)/o</J+ µ01 [Bb¢/h¢hµ · oh<Pfaµ+ B/hµab<Pfaµ ] , 

and 
h11 =(hµh¢)-1o(h¢�11B)/aµ , 

hµ= -(h11h¢)-1[a(h11�¢B)/a¢+a(h¢�11B)/a)) ] , 

h¢ = (h11h,,)- 1a(h11�¢B)/aµ . 

(A7.3) 

(AS.I) 

(AS.2) 

(AS.3) 

It is interesting to note tha tthemomentum equation in the µ-direction, i. e. , the tangen
tial direction to the ambient field, is a function of only the gradient of the perturbed 
plasma pressure in the µ-direction. 

and 

Substituting eqs. (AS) into (A 7) , we obtain 

a2 xjaµ
2+a(1n h¢/h11hµ)/aµ · axjaµ -(hi/vl) · a2xjat2 

= + B-1
µoh l'h�o[p1 + B(µoh11h¢)-1(0X¢ /o))- oX)a<jJ)]/a<jJ , 

a2x¢/aµ
2 +a(1n hjhµh¢)/aµ · ax¢/aµ-(hi/vl) · a2x¢;ai2 

= - µ0B-1hµh}a[Pi + B(µoh11h,p)-1(aX,p/o)) - aX11/a<jJ) ]/ov 
+2h¢/hv(oXja<jJ-aX,p/o)))ahfl/av , 

(A9.1) 

(A9.2) 

where X11 =h11E11 = +h11�¢B, X,p =h¢E,p = -h,p�11B and Vl =B2/µ,0Pom· E11 , E,p and VA 
stand for the perturbed electric fields and the Alfven speed, respectively. Equations 
(A9.l-A9.2) are the coupled toroidal and poloidal wave equations . If X11 and X,p 
were numerically determined, it is possible to obtain b11 and b,p from eq. (AS), i.e. , 

h11 = -(hµh,p)- 1·aXcp/aµ , 

bcp= +(h11hµ)- 1 - axjaµ . 

(Al 0.1) 

(Al0.2) 

In the axisymmetric case (a/a<jJ=O), there are two decoupled modes. Equations 
(A9.1) and (A9.2) express the Alfven and the fast magnetosonic modes, respectively. 
The Alfven mode is a guided toroidal wave in which Poynting vector is always along 
the field line. The fast magnetosonic mode is a propagating wave of which energy 
flux crosses the ambient field. We can obtain another guided poloidal wave, which 
was introduced by RADOSKI (1967), where the azimuthally asymmetric terms dominate 
and the relation (aXjo<jJ-aXcp/av=O) is constrained. Hence, the µ-component of 
the perturbation field along the field line becomes 

When this condition is imposed, eqs. (A9.1-A9.2) are clearly no longer coupled. 


