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The material circulation in the middle atmosphere is driven by momentum 

deposition of atmospheric waves such as gravity waves and Rossby waves 

propagating mainly from the troposphere as well as diabatic heating by radiative 

processes (Figure 1). This circulation largely affects the thermal and chemical 

structure of the middle atmosphere. The material circulation had mainly been studied 

in the two-dimensional (2-D) meridional cross section in the transformed Eulerian 

mean framework (Andrews and McIntyre 1976; 1978) because the Lagrangian mean 

flow, which represents the material circulation, is in good quantitative agreement 

with residual mean flow under certain conditions (Pendlebury and Shepherd, 2003). 

There is, however, increasing evidence that the material circulation has zonally 

asymmetric structures (Gabriel et al. 2011). This suggests necessity of a quantitative 

study on three-dimensional (3-D) material circulation in the middle atmosphere. 

Kinoshita and Sato (2013) derived formulae of 3-D residual mean flows applicable 

to both Rossby waves and gravity waves. The formulae should be a powerful tool to 

investigate longitudinal structures of the material circulation in the middle 

atmosphere. 

During winter, the polar stratosphere is dominated by the polar vortex, which 

arises from radiative cooling in the absence of solar ultraviolet heating. But it can 

warm due to displacement of the polar vortex and/or anomalous adiabatic heating by 

downward residual mean flow. The warming phenomena have different 

characteristics according to their occurrence periods (Figure 2). In early winter, the 

polar vortex often displaces substantially from the Pole mainly in the middle and 

lower stratosphere. This warming phenomenon is called Canadian warming (CW; 

Manney et al. 2001) and South Pacific warming (Farrara et al. 1992) in the Northern 

Hemisphere (NH) and the Southern Hemisphere (SH), respectively. In the middle of 

winter, polar stratospheric temperature sometimes increases rapidly with time, 

accompanied by collapse of the polar vortex. Such an event is called stratospheric 

sudden warming (SSW). Its frequency after 1950s, when reanalysis data is available, is approximately 0.6 per year in the NH 

(Charlton and Polvani 2007). On the other hand, in the SH, SSW occurred only in 2002 (Roscoe et al. 2005). In the end of 

winter, a relatively sudden warming called stratospheric final warming (SFW) occurs every year, followed by summer state of 

the polar stratosphere. SFW dates are 1 month earlier in the NH than in the SH (Black et al. 2006; Hirano et al. 2016). 

The big picture of our study is to investigate longitudinal structures of the residual mean flow during these warming 

phenomena in both hemispheres. Reanalysis data mainly used in our study is the Japanese 55-year Reanalysis (JRA-55). JRA-

55 is the longest reanalysis whose data assimilation scheme is 4Dvar. 

3-D structures of the material circulation during SFWs in the SH were revealed by Hirano et al. (2016). They examined 

interannual variability of SFW date in terms of wave activity by constructing early-minus-late SFW composites and showed in 

both two and three dimensions that potential temperature advection by residual mean flow is a main contributor to potential 

temperature increase before the SFW date, while contribution of diabatic heating by shortwave radiation, which is mainly 

attributable to ozone, is minor (Figure 3). 

Our next focus is CWs, SSWs, and SFWs in the NH. Before moving on to analysis, we propose new definitions of CWs, 

SSWs, and SFWs by applying the momentum diagnostics (Waugh 1997) to the polar vortex, which is a main point of our 

presentation. Traditionally, zonal mean zonal wind is used to define SSWs and SFWs, for example, by Charlton and Polvani 

(2007) and Black et al. (2006), respectively. Although their definition is simple and easy to deal with, SSWs (SFWs) defined 

by them may include CWs and SFWs (SSWs). Moreover, the polar vortex has notable horizontal structure during SSWs and 

SFWs, which cannot be captured by the definition based on zonal mean quantities. Mitchell et al. (2013) and Seviour et al. 

(2013) proposed new definition of SSWs based on momentum diagnostics, where the polar vortex is approximated as an 

Figure 2: Summary of warming phenomena 

in the winter polar stratosphere and their 

occurrence period in both hemispheres. 

Figure 1: Schematic of the material 

circulation in the atmosphere. The 

shaded regions labeled S, P, and G 

denote regions of breaking synoptic-

scale, planetary-scale, and gravity 

waves, respectively (Plumb 2002). 



 

 

equivalent ellipse. The momentum diagnostics enable them to define displacement and splitting SSWs separately by using 

centroid latitude and aspect ratio, respectively, of the equivalent ellipse as a criterion. However, their SSWs may include CWs 

and SFWs. Moreover, there is almost no clear definition of CWs. 

CWs, SSWs, and SFWs are clearly distinguished in our analysis, and new definitions for them are proposed based on 

momentum diagnostics to investigate longitudinal structures of the polar vortex and material circulation during CWs, SSWs, 

and SFWs. The validity of our new definition will be guaranteed in terms of mixing by an analysis based on equivalent latitude 

(Nash et al. 1996). 
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Figure 3: Polar stereographic projection maps of early-minus-

late SFW composites of (a) tendency of potential 

temperature, potential temperature advection by (b) the 

horizontal and (c) vertical components of residual mean flow, 

heating rate by (d) longwave and (e) shortwave radiation, (f) 

potential temperature advection by all the components of 

residual mean flow, and (g) ozone mass mixing ratio for the 

time period from 1 to 15 October at 10 hPa. Contours 

representing 0, ±1, ±2, ±4, and ±8 K/d are drawn in 

Figures 3a, 3d, and 3e. Contour interval in Figures 3b, 3c, and 

3f is 15 K/d and that in Figure 3g is 0.5 mg/kg. Only areas 

with 95% confidence level for a two-sided t test are colored 

(Hirano et al. 2016). 


