Metamorphism of layered firn at Dome Fuji, Antarctica: Evolution of relations between Nearinfrared reflectivity and the other textural/chemical properties Shuji Fujita^{1,2}, Kumiko Goto-Azuma^{1,2}, Hiroyuki Enomoto^{1,2,3}, Kotaro Fukui¹, Motohiro Hirabayashi¹, Akira Hori³, Yu Hoshina⁴, Yoshinori Iizuka⁵, Yuko Motizuki⁶, Hideaki Motoyama^{1,2}, Fumio Nakazawa¹, Shin Sugiyama⁵, Sylviane Surdyk¹, Kazuya Takahashi⁶ ¹National Institute of Polar Research ²Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI) ³Kitami Institute of Technology, Kitami, Japan ⁴Nagoya University, Nagoya, Japan ⁵Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan ⁶RIKEN Nishina Center, Wako, Japan Evolution of polar firn was investigated at sites at Dome Fuji, to better understand signals of deep ice cores. Using samples from a 4-m-deep pit and a 122-m-deep core, relations between major textural and chemical properties, such as Near-infrared light reflectivity R, density ρ , microwave dielectric anisotropy $\delta\epsilon$, and concentration of major ions, were investigated at a depth range of 0-122 m, with high spatial resolutions. At the near-surface depths, we found: (i) Fluctuations of R, ρ , and $\delta\epsilon$ are positively correlated; (ii) $\delta\epsilon$ ranges 0.03-0.07 immediately below the snow surface at ~ 0.1 m depth; (iii) These properties of R, ρ , and $\delta\epsilon$ are not correlated to major ions. With increasing depths during reported phenomena of density crossover, the positive correlation of R to $\delta\epsilon$ persistently remains with a slight decrease. Besides, R becomes weakly negatively correlated to concentration of Na⁺ which is the sea salt marker. These facts suggest that textural features of the near-surface depths are preserved in both R and $\delta\epsilon$ at a depth range immediately below bubble-close-off, being weakly affected by reported softening of ice by Cl ions. We therefore suggest that optically layered features in ice cores are directly linked to the metamorphism.