Evaluation of black carbon measurements in the Arctic

- *P. R. Sinha^{1, 3}, Y. Kondo², M. Koike¹, J. A. Ogren⁴, A. Jefferson⁵, T. E. Barrett⁶, R. J. Sheesley^{6, 7}, S. Ohata¹, N. Moteki¹, H. Coe⁸, D. Liu⁸, M. Irwin⁹, P. Tunved¹⁰, P. K. Quinn¹¹, and Y. Zhao¹²
- ¹Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- ²National Institute of Polar Research, Tachikawa, Tokyo, 190-8518, Japan
- ³Balloon Facility, Tata Institute of Fundamental Research, ECIL Post 5, Hyderabad, 500062, India
- ⁴ NOAA/ESRL Global Monitoring Division 325 Broadway R/GMD1 Boulder, CO 80305, USA
- ⁵Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder 80309, USA
- ⁶ The Institute of Ecological, Earth, and Environmental Sciences, Baylor University, One Bear Place 97205, Waco, Texas 76798, USA
- ⁷ Department of Environmental Science, Baylor University, One Bear Place 97205, Waco, Texas 76798, USA
- ⁸Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, M13 9PL, UK
- ⁹Cambustion Ltd., Cambridge, CB18DH, UK
- ¹⁰Department of Environmental Science and Analytical Chemistry, Stockholm University, Svante Arrhenius Väg 8, 11418, Sweden
- ¹¹NOAA PMEL, 7600 Sand Point Way NE, Seattle, WA 98115, USA
- ¹²Air Quality Research Center, University of California-Davis, One Shields Ave. Davis, CA 95616, USA

Abstract

Long-term measurements of light absorption coefficient (b_{abs}) values have been reported by previous studies using particle soot absorption photometers (PSAP) for Barrow and Ny-Ålesund in the Arctic. However, the effects on b_{abs} of other aerosol chemical species co-existing with black carbon (BC) have not been critically evaluated. Furthermore, different mass absorption cross-section (MAC) values have been used to convert b_{abs} to BC mass concentration ($M_{BC} = b_{abs}/MAC$). We used a continuous soot monitoring system called COSMOS, which uses a heated inlet to remove volatile aerosol compounds, to measure b_{abs} (b_{abs} (COSMOS)) at these sites for 3 years. Field measurements and laboratory experiments have suggested that b_{abs} (COSMOS) is affected on average by about 9% by sea-salt aerosols. M_{BC} values derived by COSMOS (M_{BC} (COSMOS)) using MAC obtained by our previous studies, agreed to within 9% with elemental carbon concentrations at Barrow measured for 11 months and to within 3% with M_{BC} measured by a single particle soot photometer (SP2) near Ny-Ålesund during the spring ACCACIA aircraft campaign. These results indicate that the accuracy of M_{BC} (COSMOS) was high at both

sites. b_{abs} (PSAP) was systematically higher than b_{abs} (COSMOS), by 22% at Barrow (PM₁) and 43% at Ny-Ålesund (PM₁₀). Using b_{abs} (COSMOS) as a reference, we derived (M_{BC} (PSAP) from b_{abs} (PSAP) measured since 1998. M_{BC} (PSAP) values derived at Barrow for 1998-2015 decreased by about -1.0 ± 0.72 ng m⁻³ yr⁻¹ in winter and spring. We also established the seasonal variations of M_{BC} at these sites.