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Introduction:
The famous Neuschwanstein (NSS) meteorite fall
occurred in 2002 (April 6) in south Bavaria at the
border to Austria. Three individual stones have been
found in July 2002, May and June 2003 with a mass
of 1750 gr (NSS1), 1625gr (NSS2) and 2843gr
(NSS3) [1,2]. Neuschwanstein was classified as an
EL6 chondrite [3,4]. In the meantime a number of
studies have been published on NSS 1 and 2 material
investigating mineralogy/petrology, chemistry, petro-
physics / magnetism and other properties [5,6,7].
Almahata Sitta (polymict ureilite) was the first case
ever reported that a small asteroid (2008 TCs3) was
detected and remotely studied in near-Earth space
(oct. 6™, 2008), found to be on a collision course with
our planet, and after the observed fall (oct. 7", 2008)
many meteoritic fragments were found in North
Sudan. All details concerning this fascinating und
unique object are published in a special volume of
Meteoritics & Planetary Science (2010), with some
more publications in 2011 [8]. Almahata Sitta was
classified as a polymict ureilite. Later is was found
that Almahata Sitta represents a complex breccia
containing many different meteorite types, such as
ordinary chondrites, unique new chondrite types and
various Enstatite chondrites.
The aim of our investigation is to compare
mineralogy/chemistry/petrology and magnetism of
both meteorites. Our specific interest was on the
terrestrial alteration effects: Neuschwanstein 2 was
found about 13 months after the fall, the Almahata
Sitta samples about half a year after the fall (to our
best knowledge). Additionally, fusion crust effects to
the magnetic signature can be investigated very well
under such excellent conditions.

Samples and investigations
Afull slice of Neuschwanstein 2 (Mineralogical State
Collection, Munich) was prepared and a profile
across the slice sub-sampled for this investigation (...
oriented individual samples). Samples of the fusion
crust on both sides were included in our magnetic
experiments. 2 small chips and a number of PTS of E
chondritic lithologies of Almahata Sitta were
investigated in parallel and with the same
experimental setup in order to compare the magnetic
signature. Additionally, selected magnetic parameters
have been obtained on all Enstatite chondrites of the
Mineralogical State Collection, Munich, to widen the
existing databases of magnetic susceptibility of stony
meteorites [9].
The following magnetic parameters have been
analyzed, for all details concerning the techniques

and instrumentation we refer to [10, 11, 12]: Natural
Remanent  Magnetization (NRM), Isothermal
Remanent Magnetization (laboratory) and stability,
magnetic  susceptibility and anisotropy, IRM
low-temperature  experiments,  thermomagnetic
experiments up to 800°C (vacuum). Additionally we
performed optical microscopy (polarized light),
Electron Microprobe Analysis (quantitative) and
Raman Spectroscopy.
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Fig. 1: Full slice of Neuschwanstein 2 and sub-
sampled profile as it was used for our investigation.

Results and interpretation

The room temperature magnetic behavior of NSS 2 is
dominated by kamacite in all samples except fusion
crust and a 1-2 mm thick zone where clear alteration
effects could be detected. NRM, IRM and MS show
a very homogenous distribution along the whole
profile (i.e. throughout the whole volume of the
meteorite. The low-T experiments can simulate space
conditions and are requested in order to understand
magnetization processes and the magnetic record
obtained in space, i.e. on the parent body (bodies) of
NSS and Almahata Sitta, respectively. The signal is
characterized by the presence of daubreelite, troilite
and a still unknown magnetic phase.
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Fig. 2: Low-T IRM experiment on a NSS 2




subsample: the signature is dominated by troilite,
daubreelite and an unknown phase with a transition a
very low T.
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Fig. 3: Thermomagnetic curve on a NSS 2
subsample: Heating curve shows kamacite with a
Curie temperature of about 760°C, indicating a very
low Ni content.
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Fig. 4: Polished section of NSS 2 shows Alabandin
(MnS) as a typical phase of Enstatite Chondrites.
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Tab. 1: Chemical composition of the most important
phases in the Neuschwanstein EL6 chondrite.

Electron microprobe analyses (EMPA) and Raman
spectroscopy results are in good agreement with the
findings of the magnetic experiments (magnetic
phase analysis) on both meteorites [details of the
magnetic signature of Almahata Sitta are found in
10].

However, one major outcome of our studies is as
follows: in order to be able to understand and
interpret the results of the magnetic phase analyses
correctly, additional experiments on well defined
synthetic/natural equivalent materials of rare
magnetic phases such as daubreelite, troilite,
alabandin or Fe-silicides (Almahata Sitta) are
urgently required.
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