A novel ¹⁰Be proxy of cosmic-ray intensity between 11-28 ka from Dome Fuji, Antarctica

内田智子¹、堀内一穂²、箕浦幸治¹、菅原愛²、安富友樹人²、松崎浩之³、柴田康行⁴、本山秀明⁵ ¹ 東北大学大学院理学研究科 ² 弘前大学大学院理工学研究科 ³ 東東京大学大学院工学系研究科 ⁴ 国立環境研究所 ⁵ 国立極地研究所

A novel ¹⁰Be proxy of cosmic-ray intensity between 11-28 ka from Dome Fuji, Antarctica

Tomoko Uchida¹, Kazuho Horiuchi², Koji Minoura¹, Ai Sugawara², Yukihito Yasudomi², Hiroyuki Matsuzaki³, Yasuyuki

Shibata⁴ and Hideaki Motoyama⁵

¹Institute of Geology and Paleontology, Graduate school of Science, Tohoku University ²Graduate School of Science and Technology, Hirosaki University ³Graduate School of Engineering, The University of Tokyo ⁴ National Institute for Environmental Studies ⁵National Institute of Polar Research

Cosmogenic ¹⁰Be is thought to be a paleoproxy of the cosmic ray intensity, which is strongly connected to the solar activity and geomagnetic field intensity. Thus, detailed ¹⁰Be records obtained from bipolar ice cores were often utilized for elucidating the history of those during the Holocene epoch (e.g. Vonmoos et al., 2006; Horiuchi et al., 2008). However, such records are very few for the last glacial period. We present herein a novel, detailed ¹⁰Be record covering the period of 11–28 ka BP, which was obtained from an ice core recovered from the Dome Fuji station, Eastern Antarctica (77°19′S, 39°42′E).

The ¹⁰Be flux recorded in the Dome Fuji ice core varied independently of the δ^{18} O changes, and the contributing dust ratio to the ¹⁰Be concentration was calculated to be within 6%. These facts suggest that the meteorological effects on the ¹⁰Be deposition have not been so significant in the Dome Fuji ice core. A remarkable feature in the chronostratigraphic variations of the both ¹⁰Be concentration and flux was sub-millennial to multi-mullennial fluctuations found in throughout the investigated interval. The fluctuations are significantly correlative with those observed in the IntCal09 Δ^{14} C records (Reimer et al., 2009) although only the latter shows a long-term decreasing trend presumably caused by the influence of the past high production through the global carbon circulation (a memory effect). A long-term trend and low-frequency fluctuations of the ¹⁰Be flux are fairly similar with the inverse of the paleointensity in a stacked high-resolution paleomagnetic record GLOPIS-75 (Laj et al., 2004). These facts strongly suggest that the variations in the ¹⁰Be flux correctly reflect changing of the ¹⁰Be production rate in the atmosphere. Apparent minor discrepancies between the ¹⁰Be and Δ^{14} C records were found at certain intervals of distinct climatic transitions such as around 12 and 15 kyr BP. These inconsistencies were presumably caused by the different transportation systems of ¹⁰Be and ¹⁴C, the latter must have been significantly affected by changes in the global carbon circulation during the later part of the last glaciation.

References

- Horiuchi, K. et al., Ice core record of ¹⁰Be over the past millennium from Dome Fuji, Antarctica: a new proxy record of past solar activity and a powerful tool for stratigraphic dating, Quaternary Geochronology, 3, 253-261, 2008.
- Laj, C., C. Kissel, and J. Beer, High resolution global paleointensity stack since 75 kyr (GLOPIS-75) calibrated to absolute values, Timescales of the paleomagnetic field, AGU, 255-265, 2004.
- Reimer, P. J. et al., IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP, Radiocarbon, 51(4), 1111-1150, 2009.
- Vonmoos, M., J. Beer, and R. Muscheler, Large variations in Holocene solar activity: Constraints from ¹⁰Be in the Greenland Ice Core Project ice core. Journal of Geophysical Research, 111 (A10), doi:10.1029/2005JA011500, 2006.