地衣の共生藻の光阻害防御機構である乾燥誘導性 NPQ は、地衣菌の生産するアラビトールに よって促進される

小杉真貴子¹、三宅博久²、柴田穣³、宮澤淳夫⁴、菓子野康浩⁴、佐藤和彦⁴、伊藤繁² ¹極地研 ²名古屋大学大学院理学研究科物質理学専攻 ³東北大学大学院理学研究科化学専攻 ⁴兵庫県立大学大学院生命理学研究科生命科学専攻

Lichen assist the drought-induced NPQ of their photobiont by arabitol

Makiko Kosugi¹, Hirohisa Miyake², Yutaka Shibata³, Atsuo Miyazawa⁴, Yasuhiro Kashino⁴, Kazuhiko Satoh⁴, Shigeru Itoh²

¹National institute of Polar Research (NIPR) ²Department of Physics, Nagoya University ³Department of Chemistry, Tohoku University ⁴2Department of Life Science, University of Hyogo

Lichens have remarkable drought tolerance, and such ability enables them to survive in extreme environments that frequently fall in desication. We have investigated their highly effective thermal dissipation mechanism of excess light energy in photosystem II under drought conditions that is detected as non-photochemical quenching (NPQ). Drought-induced non-photochemical quenching (d-NPQ) plays a very important role in photosynthetic organisms inhabiting in extreme drought sites, because excess light under drought condition induces accumulation of ³chl* and the resulting ³chl* generates relative oxygen species (ROS). ROS causes photoinhibition and injures cells leading to cell deaths.

Recently, it was reported that the d-NPQ related energy transfer from PS II to a fluorescence quencher, F740, and an energy dissipation within 30 fs in dehydrated lichens. However, we found that photobiont *Trebouxia* sp. lost these abilities and became more sensitive against light stress once they had been isolated from a lichen body *Ramalina yasudae*. This phenomenon indicated the presence of physico-chemical interaction between the mycobiont and photobiont.

We analyzed the water-soluble materials obtained during the isolation process of *Trebouxia* from *R. yasudae*, and found that a pentane-1,2,3,4,5-pentol (D-Arabitol) was the major component. Therefore, we measured time-resolved fluorescence spectra and analyzed decay-associated spectra (DAS) of *R. yasudae*, isolated *Trebouxia* and arabitol-treated *Trebouxia*. As a result, isolated *Trebouxia* didn't show d-NPQ but arabitol-treated *Trebouxia* showed d-NPQ and energy transfer from PSII to F740 as in lichen. Based on these results, we can conclude that accumulated arabitol in lichen thalli accelerate energy dissipation in photobionts under drought conditions leading to the protection of them from photoinhibition.