南極コケ坊主生態系における窒素固定菌と脱窒菌の多様性

中井亮佑^{1,2,7}、阿部貴志³、馬場知哉⁴、伊村 智⁵、鹿児島 浩⁴、 神田啓史⁵、小原雄治⁶、仁木宏典^{4,6}、柳原克彦⁴、長沼 毅¹ ¹広島大学大学院生物圏科学研究科 ²日本学術振興会特別研究員 ³新潟大学大学院自然科学研究科 ⁴新領域融合研究センター ⁵国立極地研究所 ⁶国立遺伝学研究所 ⁷現所属:国立遺伝学研究所

Microfloral association for nitrogen cycling in an Antarctic moss pillar inferred from phylogenetic analyses

Ryosuke Nakai^{1, 2, 7}, Takashi Abe³, Tomoya Baba⁴, Satoshi Imura⁵, Hiroshi Kagoshima⁴, Hiroshi Kanda⁵, Yuji Kohara⁶, Hironori Niki^{4, 6}, Katsuhiko Yanagihara⁴, Takeshi Naganuma¹ ¹Graduate School of Biosphere Science, Hiroshima University ²Research Fellow of the Japan Society for the Promotion of Science ³Graduate School of Science and Technology, Niigata University ⁴Transdisciplinary Research Integration Center ⁵National Institute of Polar Research ⁶National Institute of Genetics ⁷Present address: National Institute of Genetics

Aquatic mosses form unique tower-like structures called "moss pillars (Koke Bouzu in Japanese)" in ultraoligotrophic Antarctic lakes. The pillars consist of distinct redox-affected sections, that is, oxidative exteriors and reductive interiors. On the basis of analyses of fatty acid compositions, 16S/18S rRNA phylotypes, and RuBisCO genotypes (Nakai et al. Polar Biology 2012a, 2012b, 2012c), we had proposed that a "pillar" is a community and habitat of functionally interdependent organisms. Here, we report the diversity of the genes encoding nitrogenase (*nifH*), nitrite reductase (*nirK* and *nirS*), and nitric oxide reductase (*qnorB*) in a pillar. In total, 56 PCR clone libraries were constructed from an entire pillar, and 96 clones from each library (a total of 5,376 clones) were sequenced. Phylogenetic analyses showed that the *nifH* gene sequences of purple photosynthetic γ -proteobacteria, the *nirK* sequences of α -proteobacteria, the *nirS* sequences of β -proteobacteria, and the putative *qnorB* sequences of acidobacteria were dominant in the pillar. Furthermore, cyanobacterial *nifH* sequences were detected only in the exterior of the pillar, whereas sulfate-reducing δ -proteobacterial *nifH* sequences were subdominant in the interior. Such layer-specific distributions were also found during *nirK*, *nirS*, and *qnorB* sequence analyses. These results suggest that different phylogenetic groups participate in the nitrogen fixation and denitrification processes within a pillar. We would like to discuss about the microbial synergy that plays a vital role in the existence and maintenance of the moss pillar

References

- 1. Nakai R, Abe T, Baba T, Imura S, Kagoshima H, Kanda H, Kanekiyo A, Kohara Y, Koi A, Nakamura K, Narita T, Niki H, Yanagihara K, Naganuma T (2012a) Microflorae of aquatic moss pillars in a freshwater lake, East Antarctica, based on fatty acid and 16S rRNA gene analyses. *Polar Biology* **35**(3): 425–433.
- Nakai R, Abe T, Baba T, Imura S, Kagoshima H, Kanda H, Kohara Y, Koi A, Niki H, Yanagihara K, Naganuma T (2012b) Eukaryotic phylotypes in aquatic moss pillars inhabiting a freshwater lake in East Antarctica, based on 18S rRNA gene analysis. *Polar Biology* 35(10): 1495–1504.
- 3. Nakai R, Abe T, Baba T, Imura S, Kagoshima H, Kanda H, Kohara Y, Koi A, Niki H, Yanagihara K, Naganuma T (2012c) Diversity of RuBisCO gene responsible for CO₂ fixation in an Antarctic moss pillar. *Polar Biology* Published online before print (doi:10.1007/s00300-012-1204-5)