北西グリーンランド氷床 SIGMA-A における雪氷観測

的場澄人¹、山口悟²、山崎哲秀^{3,4}、青木輝夫⁵、庭野匡思⁵、谷川朋範⁶、本山秀明⁷ ¹北海道大学 低温科学研究所 ²防災科学研究所 雪氷防災研究センター ³株式会社地球工学 ⁴北極犬橇探検家 ⁵気象研究所 ⁶宇宙航空開発機構 地球観測研究センター ⁷国立極地研究所

Glaciological observations at Site SIGMA-A on the northwestern Greenland Ice Sheet

Sumito Matoba¹, Satoru Yamaghuchi², Tetsuhide Yamasaki^{3,4}, Teruo Aoki⁵, Masashi Niwano⁵, Tomonori Tanikawa⁶ and Hideaki Motoyama⁷

¹Institute of Low Temperature Science, Hokkaido University ²Snow and Ice Research Center, National Research Institute for Earch Science and Disaster Prevention ³Geo Tech Ltd. ⁴Arctic dog-sledge explorer ⁵Meteorological Rearch Institute ⁶Earth Observation Research Center, Japan Aerospace Exploration Agency ⁷National Institute of Polar Research

To clarify the contributions of light absorbing snow impurities and glacial microbes to recent abrupt melting of snow/ice in Greenland, intensive observations of meteorological and snow-physical parameters have carried out at the site SIGMA-A (78°03'N, 67°38'W, 1,490 m a.s.l.) on northwestern Greenland ice sheet during the period June 26 – July 16, 2012 (Fig. 1). Under the expedition, we carried out glaciological observations as snow stake measurement, snow pit observation, snow samplings for water-soluble ions, stable isotope of water (δD and $\delta^{18}O$), and light absorbing insoluble impurities, and snow core drilling with a hand auger. On the snow pit observation, specific surface area (SSA) of snow cover was measured with near-infrared photography (NIR) method. The comparison of the measured data to stratigraphy and grain size by visual

observation shows that the SSA fluctuated with variations in snow properties (such as grain type and grain size). Although the distribution pattern of the SSA did not vary with time, its value reduced (Fig. 2). This decrease in the SSA is probably due to an increase in grain size. Data from our SSA measurements will become a valuable part of validating numerical snowpack metamorphism. A 19m ice core was obtairnd with a hand auger. Bulk density of and visible stratigraphy of the ice cores was observed, and samples for chemical analysis were prepared at the drilling site. Profiles of ice layer percentage and density showed that the ice cores from surface to 3m depth were influenced by melt water owing to recent warming (Fig. 3). In this contribution, we discuss melting features of the observation site shown by ice core analysis and satellite data analysis.

Figure 2. Comparison of results from SSA and snow pit data

Figure 1. Location of observation site

Figure 3. Profiles of ice layer percentage in 0.1m long ice core and bulk density of ice cores