GRENE 北極圏プロジェクト陸域モデルグループの活動と目標

斉藤和之¹、山崎剛²、伊勢武史³、羽島知洋¹、保坂征宏⁴、伊藤昭彦⁵、庭野匡思⁴、 大石龍太⁶、朴昊澤¹、末吉哲雄¹、山口悟⁷、芳村圭⁶

¹ 海洋研究開発機構,² 東北大学,³ 兵庫県立大学,⁴ 気象研究所,⁵ 国立環境研究所, ⁶ 東京大学,⁷ 防災科学技術研究所

GOALS AND ACTIVITIES OF THE TERRESTRIAL MODELING GROUP OF "GRENE ARCTIC CLIMATE CHANGE RESEARCH PROJECT"

Kazuyuki Saito¹, Takeshi Yamazaki², Takeshi Ise³, Tokohiro Hajima¹, Masahiro Hosaka⁴, Akihiko Ito⁵, Masashi Niwano⁴, Ryouta O'ishi⁶, Hotaek Park¹, Tetsuo Sueyoshi¹, Satoru Yamaguchi⁷, Kei Yoshimura⁶ ¹IJapan Agency for Marine-Earth Science and Technology, Japan, ²Tohoku University, Japan, ³University of Hyogo, Japan, ⁴Metorological Research Institute, Japan, ⁵National Institute for Environmental Studies, Japan, ⁶University of Tokyo, Japan, ⁷National Research Institute for Earth Science and Disaster Prevention

The goals of the modeling group in the terrestrial research project of the GRENE Arctic Climate Change Research Project (GRENE-TEA) are to a) feed the possible improvement of the physical and ecological processes for the Arctic terrestrial modeling (excl. glaciers and ice sheets) in the extant terrestrial schemes in the coupled global climate models (CGCMs) to the CGCM research project, and b) lay the foundations of the future-generation Arctic terrestrial model development. To achieve these goals we have been attempting to 1) deepen the feasibility of mutual collaborations and comparisons between the participating models, and 2) enhance communications with the in-situ and remote-sensing observationists to transform the collections of observable data and information more effectual for calibration, validation, improvement and development of the conceptual and numerical models.

We will report our activities, especially the making and the resultant "brochures" of the participating models which provide the scope, targets, specifics and capability of each model to serve as mutual references among models, and as resources for communications with other researchers (e.g., observationists, data managers), staffs and the public.

Name and type of the participating models	VISIT: Material cycle model	
	MATSIRO: Land process model	
	[STEM: terrestrial ecosystem model + Stratified SOC-LSM: carbon-land surface	
	model]	
	WRF: Regional Climate model	
	[MATSIRO + MATSIRO-Sim-CYCLE: dynamic vegetation model]	
	SNOWPACK: 1-D physical snow model	
	2LM: Land process model	
	CHANGE: Land process model	
	HAL: Land process model	
	SEIB-DGVM: dynamic ecosysytem model	
	SMAP: snow model	
Couple-able to GCM/RCM?	Yes (70%), No (30%)	
Targeted spatial scale	Site- to landscape (60%), Basin (40%), Regional to hemispheric (60%), Gglobal	
-	(70%) Other $(10%)$	

Table 1. Summary of the participating models.

Targeted processes in:	Snow	Seasonal snow (100%), Glacier/ice sheet/permanent snow (50%)
	Land-Atmosphere Exchange	Heat fluxes (100%), Water fluxes (100%), Fluxes of materials (60%), Other (20%)
	Subsurface physical processes	Hydrological-thermal processes (100%), Physical property (44%), Permafrost
		dynamics, Freeze/thaw (100%), Other (0%)
	Hydrology	Limnology or surface water body and flow (100%), subsurface hydrology, aquifer
		(25%), River channels, riverine heat and material transport (38%), Other (0%)
	Vegetation, ecosystem	Static vegetation (56%), Dynamic vegetation (56%), Ecology above the surface
		(44%), Ecology below the surface (44%), Carbon processes (56%), Nitrogen
		processes (22%), Other (33%)

	Table 1. (continued)	
Preferred platform of the observations to utilize in		Field observation (100%), Air-borne remote sensing (30%), Satellite remote
the model-observation collaboration		sensing (80%), Data assimilation (40%), Other (10%)
Expects from	Forcing data/input data	1 (40%), 2 (40%), 3 (10%), 4 (10%), 5 (0%)
	Validation data	1 (60%), 2 (30%), 3 (0%), 4 (0%), 5 (10%)
	Boundary data	1 (10%), 2 (30%), 3 (30%), 4 (10%), 5 (10%)
the	Parameter values	1 (40%), 2 (10%), 3 (50%), 4 (0%), 5 (0%)
observation side*	Knowledge/idea to improve the	1 (40%), 2 (30%), 3 (0%), 4 (30%), 5 (0%)
	Suggestions for new schemes/processes	1 (40%), 2 (30%), 3 (0%), 4 (30%), 5 (0%)
	New/additional observational	1 (20%), 2 (30%), 3 (40%), 4 (10%), 5 (0%)
	variables	1(10%) 2(20%) 3(40%) 4(10%) 5(10%)
Willing to	sites/regions	1 (10/0), 2 (30/0), 3 (40/0), 4 (10/0), 5 (10/0)
provide to the observation side*	Process analysis/clarification based on the observations	1 (60%), 2 (30%), 3 (0%), 4 (10%), 5 (0%)
	Model improvement/development to explain the observed data	1 (40%), 2 (30%), 3 (20%), 4 (10%), 5 (0%)
	Downscaling	1 (20%), 2 (10%), 3 (30%), 4 (20%), 5 (10%)
	Upscaling	$\overline{1(20\%), 2(20\%), 3(30\%), 4(0\%), 5(0\%)}$

*: '1' being "the strongest," and '5' "the weakest."