北極海 CO2 フラックスの推定:広域分布と季節・経年変化

Mapping of the air-sea CO₂ flux in the Arctic Ocean and its surrounding seas: Basin-wide distribution and seasonal to interannual variability

Sayaka Yasunaka^{1,2}, Akihiko Murata^{1,2}, Eiji Watanabe², Melissa Chierici^{3,4}, Agneta Fransson⁵, Steven van Heuven⁶, Mario Hoppema⁷, Masao Ishii⁸, Truls Johannessen⁹, Naohiro Kosugi⁸, Siv K. Lauvset¹⁰, Jeremy T. Mathis¹¹, Shigeto Nishino², Abdirahman M. Omar¹², Are Olsen⁹, Daisuke Sasano⁸, Taro Takahashi¹³, Rik Wanninkhof¹⁴

¹Research and Development Center for Global Change, Japan Agency for Marine-Earth Science and Technology, Japan ²Institute of Arctic Climate and Environment Research, Japan Agency for Marine-Earth Science and Technology, Japan ³Institute of Marine Research, Norway

⁴Department of Marine Sciences, University of Gothenburg, Sweden

⁵Norwegian Polar Institute, Fram Centre, Norway

⁶Royal Netherlands Institute for Sea Research, Marine Geology and Chemical Oceanography, Netherlands

⁷Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Climate Sciences Department, Germnay

⁸Geochemistry and Oceanography Research Department, Meteorological Research Institute, Japan Meteorological Agency,

Japan

⁹Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Norway ¹⁰Uni Research Climate, Bjerknes Centre for Climate Research, Norway ¹¹NOAA Arctic Research Program, USA

¹²Uni Research AS, Norway.

¹³Lamont-Doherty Earth Observatory of Columbia University, USA

¹⁴Atlantic Oceanographic and Meteorological Laboratory, National Oceanographic and Atmospheric Administration, USA

We produced 204 monthly maps of the air–sea CO₂ flux in the Arctic Ocean and its adjacent seas (north of 60°N) from January 1997 to December 2013, using the partial pressure of CO₂ in surface water (pCO_{2w}) estimates by a self-organizing map technique. The pCO_{2w} data were measured by shipboard underway measurements and calculated from alkalinity and total inorganic carbon of surface water samples. Subsequently, we investigated the basin-wide distribution and seasonal to interannual variability of the CO2 fluxes. The pCO_{2w} undersaturation combined with less ice-cover and strong winds drives a flux of CO₂ into the Greenland/Norwegian, Barents and Chukchi seas, averaging $11 \pm 3 \text{ mmol m}^{-2}$, $10 \pm 4 \text{ mmol m}^{-2} \text{ day}^{-1}$, and $4 \pm 4 \text{ mmol m}^{-2} \text{ day}^{-1}$, respectively, over the 17 year period. Annual CO₂ uptake of the Arctic Ocean was estimated to be 152 ± 173 TgC yr⁻¹. The seasonal variability of the CO₂ flux depends mainly on wind variability, and partly on sea-ice coverage. In winter, the CO₂ influx was large in the Greenland/Norwegian Sea because of strong winds, but small in the Chukchi Sea because of sea ice. In contrast, interannual variability was mostly related to the air–sea pCO₂ differences and partly to wind speed and sea-ice changes. In recent years, the CO₂ uptake in the Greenland/Norwegian Sea has increased and that in the southern part of the Barents Sea decreased due to increased and decreased air–sea pCO₂ differences, respectively.

Figure 1. CO2 flux [mmol m–2 day–1] from December to May (left) and from June to November (right.). Darker shades show values in grids where values were smaller than the uncertainty.