GRENE北極気候変動研究事業第2回特別セミナー「北極海航路の持続的利用実現に向けて」 平成27(2015)年11月6日(金)、東京海洋大学楽水会館

GRENE-Arctic

氷海における航路決定

- 氷海航行の特徴
 - 海氷との衝突やスタック(閉じ込め)の危険性
 - 距離・所要時間を短くすることが経済的に有利
 - 航路幅の狭いところや島の間などを通る
 必要がある
 - 海氷の変化をある程度予測して航路を 決定する必要がある
- 先行研究

- バルト海における航路選択(Kotovirta et al., 2009)
- 経済性(航行コスト)に着目した航路選択(Nam et al., 2013)
- 水況予報の不確かさに着目(Choi et al., 2015)
 - 密接度と氷厚に比例する単純な船速低減式

Ice Indexを用いた、複雑な氷況に対応する船速推定式の導出 北極海航路の夏季氷海航行における最適航路探索法の確立

使用データ

種類	内容	解像度 グリッド数	期間	備考
1 短期予報データ 数値モデルIce-POM	海氷密接度 海氷厚	25km 233×274	2011年 9月—10月	初期値を変えて31回計算 確率分布として 切断正規分布を仮定
2 衛星観測データ マイクロ波放射計AMSR2	海氷密接度 海氷厚	10km 900×900	2014年 <i>—</i> 2015年	氷厚のエラー(メルトポンドに よる)は20cmとして扱った
3 長期予測データ気候モデルMIROC5	海氷密接度 海氷厚	10km補間 584×687	2006年 <i>—</i> 2099年	RCP4.5、RCP8.5による 将来予測実験結果
NSR実航行データ 自動船舶識別装置AIS	緯度•経度 船速	_	2014年6月 2015年2 月	耐氷船最強クラス貨物船 (アイスクラスIA、IA Super) 船速2ノット以下は原則除外

経路探索アルゴリズム

- A* algorithm (Hart et al., 1968)
 - 一定の条件のもと、完全性と最適性がある
 - 解が存在すれば必ず見つけ、最小コスト解を最初に見つける
 - 各探査対象ノードについて評価値を計算し、値の小さいノード から展開していく
 - ゴールノードが展開されたら探索終了

ネットワークにおける経路探索(Fu et al., 2006)

北海道大学 栗原教授の資料を参考に作成 http://kussharo.complex.eng.hokudai.ac.jp/~kurihara/classes/Al/heuristic.pdf

75

118

S

366

北海道大学 栗原教授の資料を参考に作成 http://kussharo.complex.eng.hokudai.ac.jp/~kurihara/classes/Al/heuristic.pdf

北海道大学 栗原教授の資料を参考に作成

北海道大学 栗原教授の資料を参考に作成

氷況に対する船速の推定

船型によらずに、氷況と過去の航行実績から船速を推定する

船速推定のための指標

- Ice Index
 - INSROP(1993-1999)で提唱された、航行の難易度を表す指標
 - 開水面で最大値20を取り、小さいほど厳しい氷況を表す
 - $I = I_A + I_B + I_C$
 - I : Ice Index
 - I_A :密接度、氷厚、対象船舶のアイスクラスの影響を表す指標
 - I_{R} :リッジ(海氷が乗り重なって厚くなった状態)の影響を表す指標
 - I_C :気温によって決まる氷の強度影響を表す指標

IAが最も影響大/IB、ICはINSROPでロシアから提供された環境データを用いて推定

船速推定のための指標

 I_A :密接度、氷厚、対象船舶のアイスクラスの影響を表す指標

 I_{R} :リッジ(海氷が乗り重なって厚くなった状態)の影響を表す指標

 I_C :気温によって決まる氷の強度影響を表す指標

1_Aが最も影響大ノ1_B、1_CはINSROPでロシアから提供された環境データを用いて推定

Ice Indexと船速減少率の関係

シップ・アンド・オーシャン財団 「北極海航路—東アジアとヨーロッパを結ぶ最短の海の道—」

- 15≤lce Index≤20のとき
 - AISデータはバラつき大
 - 氷況以外の要因か
 - INSROPで抵抗計算から 得られた結果を使用
 - Ice Index=15で船速減 少率0.3333

lce Index<15のとき

- AISデータを使用
 - 比較的高い相関
- Ice Index=15で船
 速減少率0.3333と
 なる近似直線

アンサンブル予報によるバラつきを考慮した最適航路探索

アンサンブル予報によるバラつきを考慮した最適航路探索

アンサンブル予報によるバラつきを考慮した最適航路探索

	actual route	optimized route	
distance	2564 nm	2299 nm (<mark>—10.3%</mark>)	
time	383.0 hours	282.1 hours (-26.3%)	

2014年11月5日出発

砕氷能力: 0.6 m

Ice Index<18 : 1.5 m</p>

喫水制限:10.5 m v=0.768I-3.84 (I≥15) v=0.1647I-5.209 (I<15) 実航行とほぼ同じ航路を再現

距離・時間を短縮

2014年11月5日出発

砕氷能力:0.6 m

Ice Index<18 : 1.5 m</p>

喫水制限:10.5 m v=0.768I-3.84 (I≥15) v=0.1647I-5.209 (I<15) 実航行とほぼ同じ航路を再現

行どはは同し肌路を再現 距離・時間を短縮

DATA SET: Etttt datTH

 $r = \frac{r}{r}$

actual routeoptimized routedistance2422 nm2275 nm (-6.1%)time285.1 hours241.5 hours (-15.3%)

2014年10月16日出発

砕氷能力:0.6 m

Ice Index<18 : 1.5 m</p>

喫水制限:10.5 m v=0.768*I*-3.84 (*I*≥15) v=0.1647*I*-5.209 (*I*<15)

ノバヤゼムリヤの北を通る航路 よりよい航路である可能性あり

DATA SET: Ftttt.datTHI

ケース2

氷厚[m]

 $(I \ge 15)$

	actual route	optimized route
distance	3767 nm	3213 nm (-14.7%)
time	415.6 hours	360.0 hours (-13.4%)

2014年11月5日出発

砕氷能力: 0.6 m

Ice Index<18 : 1.5 m</p>

喫水制限:15 m v=0.768*I*-3.84 (*I*≥15) v=0.1647*I*-5.209 (*I*<15)

沖合を通る航路 事故時に救援が遅くなるリスク

2014年11月5日出発 砕氷能力:0.6 m • Ice Index<18:1.5 m 喫水制限:15 m v=0.768I-3.84 (I≥15) v=0.1647I-5.209 (I<15) 沖合を通る航路 事故時に救援が遅くなるリスク

実航行データとの比較3

• 2014年11月5日出発

time 415.6 hours 401.9 hours (-3.3%)

2014年11月5日出発

砕氷能力:0.6 m

- Ice Index<18 : 1.5 m</p>
- 喫水制限:15 m

ビルキツキー海峡通航を強制

海峡通航を条件付けすることは 航行支援システムとして重要

DATA SET: Ftttt.datTHI

全球気候モデルによる海氷予測

- 気候モデルによる計算は現実の急速な海氷減少を再現しきれていない
 - MIROC5による値も観測値に比べると遥かに大きい

- MIROC5の値が2010年代の観測値に達するのは2040-2050年代
- 今後20-30年程度でMIRCO5が2080-2090年代に示す値になる可能性も ある

衛星データと長期予測データに対する 航路探索の比較

- 2014年9月1日出発
- 砕氷能力: 0.6 m
 - 砕氷船エスコート下(Ice Index<18): 1.5m
- 赤い範囲の1.5mより厚い氷は1.5mとした →→
 v=0.768I-3.84 (I≥15)
 v=0.1647I-5.209 (I<15)

MIROC5データを使った航路探索 RCP4.5 (Sep. in 2025-2095) 5 *厚[m] 2035 *厚[m] 2045 *厚[m] 2 **氷**厚[m] 2025 2055

150 450

ice thickness

350 450 550

ice thickness

50 150 350 450 250

ice thickness

450 250

ice thickness

2065 **氷厚**[m]

ice thickness

50

ice thickness

ice thickness

50

150

氷厚[m]

MIROC5データを使った航路探索 RCP8.5 (Sep. in 2025-2095) 5 *厚[m] 2035 *厚[m] 2045 *厚[m] 2 2055

氷厚[m]

ice thickness

2065

350 450 550 150

ice thickness

2075

50 150 350 450 250

ice thickness

450 250

ice thickness

氷厚[m]

氷厚[m]

氷厚[m]

ice thickness

50

2085 **氷厚**[m]

ice thickness

50

150

ice thickness

50

航行所要時間の変化 (Jul.-Nov. in 2025-2095)

- Ice Indexを用いて実航行の船速データを整理し、船速を推定した
 - Ice Index<15においてはAISデータから比較的高い相関を得た
- A*アルゴリズムを用いた最適航路探索手法を確立した
 - アンサンブル予報による不確かさを考慮した航路探索を行った
 - 失敗率を考慮することでより安全な航路を探索した。
 - 実航行航路との比較を行った
 - おおむね実航行と同じ航路を再現した
 - 海峡通航を強制する条件付きの航路探索を行った
 - 長期予測データを用いた将来性の検討を行った
 - NSRの優位性は今後も増していき、数十年で夏季には海氷の影響を受けなくなる可能性もある
- 今後の課題
 - 考慮するパラメーターの追加(風、波浪、霧、海氷の氷盤サイズ)
 - 砕氷抵抗式からの船速計算手法の取り入れ
 船型に依存しないIce Index法と、船型に依存する抵抗式の両立

ご清聴ありがとうございました