林冠が疎なアラスカのクロトウヒ林を対象とした 植生フェノロジーの年々変動の高精度な検出

永井 信¹、中井太郎^{2,4}、伊川浩樹^{3,4}、金 龍元⁴、小林秀樹¹、Robert C. Busey⁴、鈴木力英¹ 海洋研究開発機構地球表層物質循環研究分野

²名古屋大学地球水循環研究センター

³農業環境技術研究所大気環境研究領域

⁴アラスカ大学フェアバンクス校国際北極圏研究センター

Accurate detection of year-to-year variability of plant phenology in an open-canopy black spruce forest in Alaska

Shin Nagai ¹, Taro Nakai ^{2,4}, Hiroki Ikawa ^{3,4}, Yongwon Kim ⁴, Hideki Kobayashi ¹, Robert C. Busey ⁴ and Rikie Suzuki ¹ Department of Environmental Geochemical Cycle Research, Japan Agency for Marine-Earth Science and Technology

² Hydrospheric Atmospheric Research Center, Nagoya University

³ National Institute for Agro-Environmental Sciences, Agro-Meteorology Division

⁴ International Arctic Research Center, University of Alaska Fairbanks

To accurately evaluate the spatio-temporal variability of ecosystem functioning (e.g. photosynthesis and evapotranspiration) in Alaska under rapid meteorological and climate changes, long-term continuous phenological observations are required. Towards this aim, integration of *in situ* and satellite observations is important but challenging task. To validate and obtain the ground-truthing for satellite remote-sensing observations, we installed interval camera system in an open-canopy black spruce forest in Alaska (Poker Flat Research Range site; 65°07'24.10"N, 147°29'14.8"W) in 2011 and then obtained daily canopy surface images more than four years. These images were provided by the Phenological Eyes Network (PEN) and are publicly available at http://www.pheno-eye.org. We found that (1) the timing of snow melting was the latest in 2013; (2) the timing of leaf-expansion in understory vegetation in 2013 and 2014 was later than that in 2011 and 2012, while the timing of leaf-fall in understory vegetation did not show clear year-to-year variability during four years; and (3) the timing of start and end of growing season detected by analysing daily Terra/Aqua MODIS satellite-observed green-red vegetation index (GRVI) showed the timing of leaf-expansion and leaf-fall in understory vegetation, respectively.