Spacio-temporal distributions of atmospheric nitrous oxide and its isotopocules in the Arctic region

Sakae Toyoda¹, Toshinobu Machida², Yasunori Tohjima², Shinji Morimoto³,

Doug Worthy⁴, Kentaro Ishijima⁵, and Naohiro Yoshida¹

¹Tokyo Institute of Technology, ²National Institute of Environmental Studies, ³Tohoku University,

⁴Environment Canada, ⁵Japan Agency for Marine-Earth Science and Technology

Nitrous oxide (N₂O) is one of the increasing greenhouse gases in the troposphere and is the most important stratospheric ozone-depleting gas emitted in the 21st century [*IPCC*, 2013; *Ravishankara et al.*, 2009]. In Arctic region, origin of atmospheric N₂O includes human activity in Europe, Russia, and North America (e.g., agriculture), biomass burning (forest fires), oceans in high-latitude northern hemisphere, and future climate change might cause substantial change in such sources. Isotopocule ratios of N₂O, which include not only elemental ¹⁵N/¹⁴N and ¹⁸O/¹⁶O ratios but also site-specific ¹⁵N/¹⁴N ratio in asymmetric NNO molecule, are regarded as useful parameters to infer the origin and production–consumption mechanisms of N₂O, and to estimate its global budget. Previous studies on N₂O trapped in the firm in polar ice sheet revealed the secular trend of isotopocule ratios, but there has been no reports on long-term monitoring of N₂O isotopomer ratios in Arctic atmosphere.

We have been measuring mixing ratio and isotopocule ratios of N_2O at two sites in Arctic region (Figure 1). At Novosibirsk, western Siberia (55°N, 83°E), monthly samples are collected at altitude of 500 m and 7000 m by aircraft, and N_2O isotopocule data has been obtained since 2005. At Churchill, northern Canada (59°N, 94°W), surface air samples are collected biweekly, and N_2O isotopocule analysis has been conducted bimonthly since 2011.

Results show that the bulk nitrogen isotope ratio ($\delta^{15}N^{bulk}$) are decreasing at the similar rate (about -0.04‰ yr⁻¹) as reported by firn-air analysis while the N₂O mixing ratio are increasing (about 0.8 ppbv yr⁻¹). This suggests isotopically light N₂O sources such as agriculture are still contributing to the increase in atmospheric N₂O. However, they also suggests a slight change in isotopic trend recently. Short-term variations, vertical gradient over Novosibirsk, and difference between the two sites will also be discussed along with atmospheric model simulation.

Figure 1. Map of air sampling stations

References

- IPCC (2013), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 1535 pp., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
- Ravishankara, A. R., J. S. Daniel, and R. W. Portmann (2009), Nitrous oxide (N₂O): The dominant ozone-depleting substance emitted in the 21st century, Science, 326, 123, doi:10.1126/science.1176985.