## Simulation of CO<sub>2</sub> and CH<sub>4</sub> seasonal cycles in Siberia

Dmitry Belikov<sup>1,2,3</sup>, Shamil Maksyutov<sup>2</sup>, Motoki Sasakawa<sup>2</sup> and Shuji Aoki<sup>4</sup> <sup>1</sup>National Institute of Polar Research, Tokyo, Japan <sup>2</sup>National Institute for Environmental Studies, Tsukuba, Japan <sup>3</sup>Tomsk State University, Tomsk, Russia

<sup>4</sup>Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Sendai, Japan

Siberia contains large amounts of plant biomass and soil organic carbon, making this region one of the largest carbon reservoirs in the world with a substantial source and sink of CO<sub>2</sub> and CH<sub>4</sub>. However the magnitude and distribution of CO<sub>2</sub> and CH<sub>4</sub> fluxes are still uncertain. Accurate estimates of carbon fluxes in Siberia are essential, both for understanding global and regional carbon cycles. Many studies have used "bottom-up" or "top-down" approaches to estimate carbon fluxes. "Top-down" approaches calculate land-atmosphere carbon fluxes based on atmospheric budgets and inverse modeling. "Bottom-up" approaches rely primarily on measurements of carbon stock changes (the 'inventory' approach) or on spatially distributed simulations of carbon stocks and/or fluxes using process-based modeling (the 'forward model' approach). Each of these general approaches builds on different knowledge foundations and employs different driver data (Hayes et al., 2012). Whereas current carbon fluxes in Siberia are very uncertain, accurate comparison of different fluxes obtained using various method is essential.

In this work, we use forward simulation employing the National Institute for Environmental Studies (NIES) three-dimensional transport model (TM) developed by Belikov et al., (2013) in order to estimate performance and quantify errors of monthly  $CO_2$  and  $CH_4$  fluxes on a subcontinental scale over Siberia. Simulated distributions of  $CO_2$  and  $CH_4$  are compared with unique Siberian observations obtained by the Center for Global Environmental Research (CGER) of the National Institute for Environmental Studies (NIES) and the Russian Academy of Science (RAS). These observations consist of precise aircraft measurements (over Surgut, Yakutsk, and Novosibirsk) and tower observations from Siberian tower network (Japan-Russia Siberian Tall Tower Inland Observation Network, JR-STATION) as described in Table 1 (Sasakawa et al., 2010).

We setup a long simulation period to obtain a better understanding of the role of emissions (using a set of  $CO_2$  and  $CH_4$  emissions scenarios), and transport model characteristics, such as the stratosphere/troposphere exchange and tracers concentration variations in the troposphere. We also analyzed modeled and observed long and short-term trend, seasonal cycle of  $CO_2$  and  $CH_4$ .

| Identifying<br>code | Location   | Latitude  | Longitude  | Sampling<br>height (m) |
|---------------------|------------|-----------|------------|------------------------|
| DEM                 | Demyanskoe | 59°47′29″ | 70°52′16″  | 63                     |
| IGR                 | Igrim      | 63°11′25″ | 64°24′56″  | 47                     |
| KRS                 | Karasevoe  | 58°14′44″ | 82°25′28″  | 67                     |
| NOY                 | Noyabrsk   | 63°25′45″ | 75°46′48″  | 43                     |
| SVV                 | Savvushka  | 51°19′30″ | 82°07′40″  | 52                     |
| VGN                 | Vaganovo   | 54°29′50″ | 62°19′29″  | 85                     |
| YAK                 | Yakutsk    | 62°05′19″ | 129°21′21″ | 77                     |

Table 1. Tower network sites in Siberia (JR-STATION).

## References

Belikov, D., Maksyutov, S., Sherlock, V., Aoki, S., Deutscher, N. M., Dohe, S., Griffith, D., Kyro, E., Morino, I., Nakazawa, T., Notholt, J., Rettinger, M., Schneider, M., Sussmann, R., Toon, G. C., Wennberg, P. O., and Wunch, D.: Simulations of column-average CO2 and CH4 using the NIES TM with a hybrid sigma–isentropic ( $\sigma$ – $\theta$ ) vertical coordinate, Atmos. Chem. Phys., 13, 1713–1732, doi:10.5194/acp-13-1713-2013, 2013.

Hayes, D. J., Turner, D. P., Stinson, G., McGuire, A. D., Wei, Y., West, T. O., Heath L.S., Dejong B., McConkey B.G., Birdsey R.A, Kurz W.A., Jacobson A.R., Huntzinger D.N, Pan Y., Post W. and Cook, R. B. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data. Global Change Biology, 18(4), 1282-1299, 2012. Sasakawa, M., K. Shimoyama, T. Machida, N. Tsuda, H. Suto, M. Arshinov, D. Davydov, A. Fofonov, O. Krasnov, T. Saeki, Y. Koyama, and S. Maksyutov, Continuous measurements of methane from a tower network over Siberia, Tellus 62B, 403– 416, 2010.